login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A239297
Floor of first differences of Pi*10^n.
0
3, 28, 282, 2827, 28274, 282743, 2827433, 28274333, 282743338, 2827433388, 28274333882, 282743338823, 2827433388230, 28274333882308, 282743338823081, 2827433388230813, 28274333882308139, 282743338823081391, 2827433388230813914
OFFSET
0,1
COMMENTS
For n>0, a(n) = decimal expansion of 9*Pi truncated to n-1 places.
This sequence is not the same as the first differences of A011545: 3, 28, 283, 2827, 28274, 282744, 2827433, 28274334, 282743339, 2827433388, ...
FORMULA
a(0)=3, a(n)=floor(Pi*10^n-Pi*10^(n-1)) for n>0.
EXAMPLE
a(2)=floor(Pi*10^2-Pi*10^1) = 282.
MATHEMATICA
Join[{3}, Differences[Pi*10^Range[0, 20]]//Floor] (* Harvey P. Dale, Oct 19 2018 *)
PROG
(PARI) a(n) = if (n==0, 3, floor(Pi*10^n-Pi*10^(n-1))); \\ Michel Marcus, Mar 18 2014
CROSSREFS
Cf. A011545.
Sequence in context: A198887 A026114 A181069 * A287884 A250890 A199754
KEYWORD
nonn
AUTHOR
Jeremy Gardiner, Mar 14 2014
STATUS
approved