The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239293 Smallest composite c > n such that n^c == n (mod c). 2
 4, 341, 6, 6, 10, 10, 14, 9, 12, 15, 15, 22, 21, 15, 21, 20, 34, 25, 38, 21, 28, 33, 33, 25, 28, 27, 39, 36, 35, 49, 49, 33, 44, 35, 45, 42, 45, 39, 57, 52, 82, 66, 77, 45, 55, 69, 65, 49, 56, 51, 65, 65, 65, 55, 63, 57, 65, 66, 87, 65, 91, 63, 93, 65, 70, 78, 85 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) is the smallest weak pseudoprime to base n that is > n. If n is even and n+1 is composite, then a(n) = n+1. [Corrected by Thomas Ordowski, Aug 03 2018] Conjecture: a(n) = n+1 if and only if n+1 is an odd composite number. - Thomas Ordowski, Aug 03 2018 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 Gérard P. Michon, Weak pseudoprimes to base a MAPLE L:=NULL: for a to 100 do for n from a+1 while isprime(n) or not(a^n - a mod n =0) do od; L:=L, n od: L; MATHEMATICA Table[k = n; While[k++; PrimeQ[k] || PowerMod[n, k, k] != n]; k, {n, 100}] (* T. D. Noe, Mar 17 2014 *) PROG (Haskell) import Math.NumberTheory.Moduli (powerMod) a239293 n = head [c | c <- a002808_list, powerMod n c c == n] -- Reinhard Zumkeller, Jul 11 2014 (PARI) a(n) = forcomposite(c=n+1, , if(Mod(n, c)^c==n, return(c))) \\ Felix Fröhlich, Aug 03 2018 CROSSREFS Cf. A000790 (primary pretenders), A007535 (smallest pseudoprimes to base n). Cf. A002808. Sequence in context: A173367 A214161 A265868 * A295997 A090086 A007535 Adjacent sequences: A239290 A239291 A239292 * A239294 A239295 A239296 KEYWORD nonn AUTHOR Robert FERREOL, Mar 14 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 08:38 EDT 2024. Contains 375008 sequences. (Running on oeis4.)