

A239291


Smallest k > 0 such that the products of the nonempty subsets of {k, k+1,..., k+n1} are all distinct.


0



1, 2, 2, 2, 3, 4, 5, 7, 9, 16, 16, 22, 22, 34, 37, 46, 46, 57, 71, 79, 81, 103, 103, 106
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..24.


FORMULA

a(n) >= A239276(n).


EXAMPLE

a(5) = 3 because the range {1,...,5} is ruled out by 1*2=2, the range {2,...,6} by 2*3 = 6 and all 31 subsets of {3,...,7} give a distinct product.


MATHEMATICA

a[1]=1; a[n_] := a[n] = Block[{k = a[n1]}, While[Min@ Differences@ Sort[Times @@@ Rest@ Subsets@ Range[k, n+k1]] == 0, k++]; k]; Array[a, 16]


CROSSREFS

Cf. A239276, A239277.
Sequence in context: A022866 A099388 A193941 * A022869 A022865 A089150
Adjacent sequences: A239288 A239289 A239290 * A239292 A239293 A239294


KEYWORD

nonn,more


AUTHOR

Giovanni Resta, Mar 14 2014


STATUS

approved



