login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239142
Number of strict partitions of n having standard deviation sigma > 1.
4
0, 0, 0, 0, 1, 1, 3, 4, 5, 8, 10, 12, 16, 20, 24, 30, 36, 43, 52, 62, 73, 87, 102, 119, 140, 163, 189, 220, 254, 293, 338, 388, 445, 510, 583, 665, 758, 862, 979, 1111, 1258, 1423, 1608, 1814, 2045, 2302, 2588, 2907, 3262, 3656, 4094, 4580, 5118, 5715, 6376
OFFSET
1,7
COMMENTS
Regarding standard deviation, see Comments at A238616.
FORMULA
a(n) + A239141(n) = A000009(n) for n >=1.
G.f.: Product_{m>=1} (1+x^m) -1 +(x^5+x^4+x^3+2*x^2+x+1)*x / ((x-1)*(x^2+x+1)). - Alois P. Heinz, Mar 14 2014
EXAMPLE
The standard deviations of the strict partitions of 9 are 0., 3.5, 2.5, 1.5, 2.16025, 0.5, 1.63299, 0.816497, so that a(9) = 5.
MATHEMATICA
z = 30; g[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, Length[t]}]/Length[t]]
Table[Count[g[n], p_ /; s[p] < 1], {n, z}] (* A239140 *)
Table[Count[g[n], p_ /; s[p] <= 1], {n, z}] (* A239141 *)
Table[Count[g[n], p_ /; s[p] == 1], {n, z}] (* periodic 01 *)
Table[Count[g[n], p_ /; s[p] > 1], {n, z}] (* A239142 *)
Table[Count[g[n], p_ /; s[p] >= 1], {n, z}] (* A239143 *)
t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsQ[n]}]]
ListPlot[Sort[t[30]]] (*plot of st.dev's of strict partitions of 30*)
(* Peter J. C. Moses, Mar 03 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 11 2014
STATUS
approved