OFFSET
0,3
COMMENTS
For n = 3, we have the following 10 matrices:
1 0 0 1 1 0 1 0 1 1 0 0 0 1 0
0 1 0 1 0 0 0 0 0 0 0 1 1 1 0
0 0 1, 0 0 0, 1 0 0, 0 1 0, 0 0 0,
,
0 0 0 0 0 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 1 0 0 0 0 0 0 0 1
0 1 0, 1 0 0, 0 0 1, 1 0 1, 0 1 1
FORMULA
a(n) = [x^n](1+x)^n*(1+x^2)^binomial(n, 2).
a(n) = sum( binomial(n, 2k)*binomial(binomial(n, 2), k), k=0..n/2 ).
a(n) = sum( binomial(n^2-2k, n-k)*binomial(binomial(n, 2), k)*(-2)^k, k=0..n ).
MATHEMATICA
Table[Sum[Binomial[n, 2k]Binomial[Binomial[n, 2], k], {k, 0, Floor[n/2]}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(binomial(n, 2*k)*binomial(binomial(n, 2), k), k, 0, n/2), n, 0, 20);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Mar 05 2014
STATUS
approved