login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238796
Symmetric (0,1)-matrices of order n where the numbers of 1's is equal to the order n.
0
1, 1, 2, 10, 52, 326, 2256, 17102, 139448, 1210582, 11116360, 107154092, 1080800788, 11345351096, 123697222208, 1395340522214, 16260899226608, 195214269203174, 2411419562368344, 30583990129966436, 397876675010548832, 5300483255653341714
OFFSET
0,3
COMMENTS
For n = 3, we have the following 10 matrices:
1 0 0 1 1 0 1 0 1 1 0 0 0 1 0
0 1 0 1 0 0 0 0 0 0 0 1 1 1 0
0 0 1, 0 0 0, 1 0 0, 0 1 0, 0 0 0,
,
0 0 0 0 0 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 1 0 0 0 0 0 0 0 1
0 1 0, 1 0 0, 0 0 1, 1 0 1, 0 1 1
FORMULA
a(n) = [x^n](1+x)^n*(1+x^2)^binomial(n, 2).
a(n) = sum( binomial(n, 2k)*binomial(binomial(n, 2), k), k=0..n/2 ).
a(n) = sum( binomial(n^2-2k, n-k)*binomial(binomial(n, 2), k)*(-2)^k, k=0..n ).
MATHEMATICA
Table[Sum[Binomial[n, 2k]Binomial[Binomial[n, 2], k], {k, 0, Floor[n/2]}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(binomial(n, 2*k)*binomial(binomial(n, 2), k), k, 0, n/2), n, 0, 20);
CROSSREFS
Sequence in context: A074612 A104497 A166694 * A216340 A080117 A080118
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Mar 05 2014
STATUS
approved