login
A238729
Maximum flow of a number.
1
2, 3, 2, 5, 4, 7, 2, 3, 4, 11, 4, 13, 4, 6, 2, 17, 5, 19, 4, 6, 4, 23, 4, 5, 4, 3, 4, 29, 8, 31, 2, 6, 4, 10, 5, 37, 4, 6, 4, 41, 8, 43, 4, 6, 4, 47, 4, 7, 6, 6, 4, 53, 5, 10, 4, 6, 4, 59, 8, 61, 4, 6, 2, 10, 8, 67, 4, 6, 8, 71, 5, 73, 4, 8, 4, 14, 8, 79, 4, 3
OFFSET
2,1
COMMENTS
F(n) is the maximal flow in a network whose nodes are the divisors of n, with an edge from a to b if and only if b/a is a prime factor of n, in which case the capacity of the edge is b/a. The source of the network is 1 and the sink is n.
FORMULA
a(n) = min_{S:P([m])\{}} Product_{i:[m]\S} (e_i+1) * Sum_{i:S} p_i, where n = Product_{i=1..m} p_i^e_i and P([m]) is the powerset of {1,...,m}.
MAPLE
with(combinat):
a:= proc(n) local S, s, f, l, m;
f:= infinity; l:= ifactors(n)[2]; m:= nops(l);
S:= subsets({$1..m}):
while not S[finished] do s:= S[nextvalue]();
if s={} then next fi:
f:= min(f, mul(1+l[i][2], i=({$1..m} minus s))*add(l[i][1], i=s))
od; f
end:
seq(a(n), n=2..100); # Alois P. Heinz, Mar 04 2014
MATHEMATICA
F[n_] := F[n] = Module[{v, e, flowgraph, flow},
v = Divisors[n];
e = Apply[DirectedEdge,
Select[Subsets[v, {2}], PrimeQ[Last[#]/First[#]] &], {1}];
flowgraph =
Graph[e, EdgeCapacity -> Map[Rule[#, (Divide @@ Reverse[#])] &, e]];
flow = FindMaximumFlow[flowgraph, 1, n, "OptimumFlowData"];
flow["FlowValue"]]
CROSSREFS
Sequence in context: A267807 A127433 A055573 * A182816 A367580 A195637
KEYWORD
nonn
AUTHOR
Ken Levasseur, Mar 03 2014
STATUS
approved