login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238135 Decimal expansion of Euler's Multi-Zeta Sum S(2,3) = Sum_{n >= 1} (Sum_{k=1..n}((-1)^(k + 1)/k)^2/(n + 1)^3). 0
1, 5, 6, 1, 6, 6, 9, 3, 3, 3, 8, 1, 1, 7, 6, 9, 1, 5, 8, 8, 1, 0, 3, 5, 9, 0, 9, 6, 8, 7, 9, 8, 8, 1, 9, 3, 6, 8, 5, 7, 7, 6, 7, 0, 9, 8, 4, 0, 3, 0, 3, 8, 7, 2, 9, 5, 7, 5, 2, 9, 3, 5, 4, 4, 9, 7, 0, 7, 5, 0, 3, 7, 4, 4, 0, 2, 9, 5, 7, 9, 1, 4, 5, 5, 2, 0, 5, 6, 5, 3, 7, 0, 9, 3, 5, 8, 1, 4, 7, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..99.

D. H. Bailey and J. M. Borwein, Euler's Multi-Zeta Sums, Lawrence Berkeley National Laboratory, 1995, p. 10.

EXAMPLE

0.1561669333811769158810359096879881936857767...

MATHEMATICA

4*PolyLog[5, 1/2] - 1/30*Log[2]^5 - 17/32*Zeta[5] - 11/720*Pi^4*Log[2] + 7/4*Zeta[3]*Log[2]^2 + 1/18*Pi^2*Log[2]^3 - 1/8*Pi^2*Zeta[3] // RealDigits[#, 10, 100]& // First

PROG

(PARI) 4*polylog(5, 1/2)-1/30*log(2)^5-17/32*zeta(5) - 11/720*Pi^4*log(2) + 7/4*zeta(3)*log(2)^2 + 1/18*Pi^2*log(2)^3 - 1/8*Pi^2*zeta(3) \\ Charles R Greathouse IV, Jul 18 2014

(SageMath)

RR = RealBallField(380)

f = fast_callable(4*polylog(5, 1/2) - 1/30*log(2)^5 - 17/32*zeta(5) - 11/720*pi^4*log(2) + 7/4*zeta(3)*log(2)^2 + 1/18*pi^2*log(2)^3 - 1/8*pi^2*zeta(3), vars=[x], domain=RR)

print([int(t) for t in str(f(0))[3:103]]) # Peter Luschny, May 06 2020

CROSSREFS

Cf. A218505.

Sequence in context: A323738 A222133 A198728 * A195449 A020798 A021182

Adjacent sequences:  A238132 A238133 A238134 * A238136 A238137 A238138

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, Feb 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 18:08 EDT 2020. Contains 334630 sequences. (Running on oeis4.)