login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237611
Squarefree numbers of form 16*k^4 + 40*k^3 + 33*k^2 + 12*k + 2, k>0.
1
103, 734, 2711, 7234, 15887, 30638, 53839, 88226, 136919, 203422, 291623, 405794, 550591, 731054, 952607, 1221058, 1542599, 1923806, 2371639, 2893442, 3496943, 4190254, 4981871, 5880674, 6895927, 8037278, 10738786, 12320159, 14070062, 16000063, 18122114
OFFSET
1,1
COMMENTS
The period of the continued fraction expansion of sqrt(a(n)) = A003285(a(n)) is 12, so the a(n) are a subset of A020351.
MATHEMATICA
Select[Table[16k^4+40k^3+33k^2+12k+2, {k, 50}], SquareFreeQ] (* Harvey P. Dale, May 16 2014 *)
PROG
(PARI) list(n)=for(n=1, 50, t=16*n^4 + 40*n^3 + 33*n^2 + 12*n + 2; if(issquarefree(t), print1(t, ", ")))
CROSSREFS
Sequence in context: A082883 A191357 A264824 * A077405 A262758 A023355
KEYWORD
nonn
AUTHOR
Ralf Stephan, Feb 10 2014
EXTENSIONS
Definition corrected by Harvey P. Dale, May 16 2014
STATUS
approved