

A237112


Number of primes p < prime(n)/2 with p! a primitive root modulo prime(n).


7



0, 0, 1, 0, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 6, 4, 2, 3, 3, 4, 7, 9, 5, 7, 5, 8, 4, 7, 6, 7, 8, 7, 11, 8, 9, 7, 13, 10, 16, 4, 7, 8, 13, 9, 8, 12, 17, 10, 14, 12, 4, 10, 14, 15, 18, 8, 9, 8, 8, 18, 6, 8, 7, 16, 9, 11, 21, 15
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Conjecture: a(n) > 0 for all n > 4. In other words, for any prime p > 7, there exists a prime q < p/2 such that q! is a primitive root modulo p.
See also A236306 for a similar conjecture.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..600
Z.W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.


EXAMPLE

a(7) = 1 since 3 is a prime smaller than prime(7)/2 = 17/2 and 3! = 6 is a primitive root modulo prime(7) = 17.
a(9) = 1 since 5 is a prime smaller than prime(9)/2 = 23/2 and 5! = 120 is a primitive root modulo prime(9) = 23.


MATHEMATICA

f[k_]:=(Prime[k])!
dv[n_]:=Divisors[n]
Do[m=0; Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]1], i]), Prime[n]]==1, Goto[aa]], {i, 1, Length[dv[Prime[n]1]]1}]; m=m+1; Label[aa]; Continue, {k, 1, PrimePi[(Prime[n]1)/2]}]; Print[n, " ", m]; Continue, {n, 1, 70}]


CROSSREFS

Cf. A000040, A000142, A234972, A235709, A235712, A236306, A236308, A236966, A237121.
Sequence in context: A006513 A105224 A261627 * A238013 A303940 A280134
Adjacent sequences: A237109 A237110 A237111 * A237113 A237114 A237115


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Apr 22 2014


STATUS

approved



