login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236306
Least prime p < prime(n) for which both p and p! are primitive roots modulo prime(n), or 0 if such a prime does not exist.
4
0, 2, 2, 0, 2, 2, 3, 2, 5, 2, 11, 2, 17, 5, 5, 2, 2, 2, 2, 13, 5, 3, 2, 3, 5, 2, 11, 2, 67, 3, 3, 2, 3, 2, 2, 13, 53, 2, 5, 2, 2, 2, 47, 5, 2, 3, 2, 3, 2, 29, 3, 7, 137, 11, 3, 5, 2, 59, 31, 13, 17, 2, 5, 23, 47, 2, 101, 23, 2, 2, 13, 7, 43, 2, 2, 5, 2, 109, 3, 127
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 4. In other words, for any prime p > 7, there exists a prime q < p such that both q and q! are primitive roots modulo p.
P. Erdős asked whether for any sufficiently large prime p there exists a prime q < p which is a primitive root modulo p (see page 377 of Guy's book in the reference).
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, New York, 2004.
EXAMPLE
a(7) = 3 since both 3 and 3! = 6 are primititive roots modulo prime(7) = 17, but 2 is not a primitive root modulo 17.
MATHEMATICA
f[k_]:=Prime[k]!
dv[n_]:=Divisors[n]
Do[Do[Do[If[Mod[Prime[k]^(Part[dv[Prime[n]-1], i]), Prime[n]]==1||Mod[f[k]^(Part[dv[Prime[n]-1], i]), Prime[n]]==1, Goto[aa]], {i, 1, Length[dv[Prime[n]-1]]-1}]; Print[n, " ", Prime[k]]; Goto[bb]; Label[aa]; Continue, {k, 1, n-1}]; Print[n, " ", 0]; Label[bb]; Continue, {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 21 2014
STATUS
approved