login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236922
Number of integer solutions to a^2 + b^2 + 4*c^2 + 4*d^2 = n.
2
1, 4, 4, 0, 8, 24, 16, 0, 24, 52, 24, 0, 32, 56, 32, 0, 24, 72, 52, 0, 48, 128, 48, 0, 96, 124, 56, 0, 64, 120, 96, 0, 24, 192, 72, 0, 104, 152, 80, 0, 144, 168, 128, 0, 96, 312, 96, 0, 96, 228, 124, 0, 112, 216, 160, 0, 192, 320, 120, 0, 192, 248, 128, 0, 24, 336, 192, 0, 144, 384, 192, 0, 312, 296, 152, 0, 160, 384, 224, 0, 144, 484, 168, 0, 256, 432, 176, 0
OFFSET
0,2
LINKS
Olivia X. M. Yao, Ernest X. W. Xia, Combinatorial proofs of five formulas of Liouville, Discrete Math. 318 (2014), 1--9. MR3141622.
FORMULA
See Maple code.
G.f.: theta_3(q)^2*theta_3(q^4)^2, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 03 2018
MAPLE
with(numtheory);
s:=n-> if whattype(n) = integer then sigma(n) else 0; fi;
f:=proc(n) global s;
if (n mod 4) = 0 then 8*s(n/4)-32*s(n/16)
elif (n mod 4) = 2 then 4*s(n/2)
elif (n mod 4) = 3 then 0
else 4*s(n); fi; end;
[seq(f(n), n=1..100)];
# a(0)=1 must be added separately
MATHEMATICA
s[n_] := If[IntegerQ[n], DivisorSigma[1, n], 0]; a[n_] := Which[Mod[n, 4] == 0 , 8*s[n/4]-32*s[n/16], Mod[n, 4] == 2, 4*s[n/2], Mod[n, 4] == 3, 0, True, 4*s[n]]; a[0] = 1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 06 2014, after Maple *)
CROSSREFS
Sequence in context: A262949 A200519 A129507 * A021698 A199739 A121547
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 14 2014
STATUS
approved