login
A236695
The n-th prime with n 0-bits in its binary expansion.
1
2, 43, 41, 139, 269, 773, 1049, 2309, 4357, 8737, 16673, 34819, 66569, 139393, 279553, 589829, 1051649, 2621569, 4260097, 9437189, 17039489, 33817601, 67649537, 167903233, 269484097, 545260033, 1074267137, 2155872769, 4311760897, 12884901893, 17184063521
OFFSET
1,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..500 (first 40 terms from Charles R Greathouse IV)
EXAMPLE
Primes p(k) such that
A035103(p(k)) = 0: 3, 7, 31, 127, 8191,...
A035103(p(k)) = 1: 2, 5, 11, 13, 23, 29,...
A035103(p(k)) = 2: 19, 43, 53, 79, 103, 107,...
A035103(p(k)) = 3: 17, 37, 41, 71, 83, 89, 101,...
A035103(p(k)) = 4: 67, 73, 97, 139, 149, 163,...
A035103(p(k)) = 5: 131, 137, 193, 263, 269, 277,...
PROG
(PARI) nz(n)=#binary(n)-hammingweight(n)
a(n)=my(k=n); forprime(p=2, , if(nz(p)==n&&k--==0, return(p))) \\ Charles R Greathouse IV, Feb 04 2014
CROSSREFS
Cf. A066195 (least prime having n zeros in binary), A236513 (the n-th prime with n 1-bits in its binary expansion).
Sequence in context: A256285 A360549 A268467 * A085460 A139835 A354726
KEYWORD
nonn,base,less
AUTHOR
Irina Gerasimova, Jan 30 2014
EXTENSIONS
New name from Ralf Stephan and Charles R Greathouse IV, Feb 04 2014
a(14)-a(27) from Charles R Greathouse IV, Feb 04 2014
a(28)-a(31) from Giovanni Resta, Feb 04 2014
STATUS
approved