The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236564 Difference between 2^(2n-1) and the nearest square. 3
 1, -1, -4, 7, -17, 23, -89, 7, 28, 112, 448, 1792, -4417, 5503, 22012, -4633, -18532, -74128, -296512, 296863, 1187452, -1181833, -4727332, 4817239, 19268956, -17830441, -71321764, 94338007, 377352028, -9092137, -36368548, -145474192, -581896768, -2327587072, -9310348288 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The distances of the even powers 2^(2n) to their nearest squares are obviously all zero and therefore skipped. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..500 FORMULA If A201125(n) < A238454(n), a(n) = A201125(n), otherwise a(n) = -A238454(n). [Negative terms are for cases where the nearest square is above 2^(2n-1), not below it.] - Antti Karttunen, Feb 27 2014 EXAMPLE a(1) = 2^1 - 1^2 = 1. a(2) = 2^3 - 3^2 = -1. a(3) = 2^5 - 6^2 = 32 - 36 = -4. MAPLE A236564 := proc(n)     local x, sq, lo, hi ;     x := 2^(2*n-1) ;     sq := isqrt(x) ;     lo := sq^2 ;     hi := (sq+1)^2 ;     if abs(x-lo) < abs(x-hi) then         x-lo ;     else         x-hi ;     end if; end proc: # R. J. Mathar, Mar 13 2014 MATHEMATICA Table[2^n - Round[Sqrt[2^n]]^2, {n, 1, 79, 2}] (* Alonso del Arte, Feb 23 2014 *) PROG (Python) def isqrt(a):     sr = 1 << (int.bit_length(int(a)) >> 1)     while a < sr*sr:  sr>>=1     b = sr>>1     while b:         s = sr + b         if a >= s*s:  sr = s         b>>=1     return sr for n in range(47):     nn = 2**(2*n+1)     a = isqrt(nn)     d1 = nn - a*a     d2 = (a+1)**2 - nn     if d2 < d1:  d1 = -d2     print(str(d1), end=', ') CROSSREFS Cf. A053188, A201125, A238454. Sequence in context: A124402 A216552 A034736 * A302549 A023860 A009881 Adjacent sequences:  A236561 A236562 A236563 * A236565 A236566 A236567 KEYWORD sign,easy AUTHOR Alex Ratushnyak, Feb 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 07:37 EDT 2021. Contains 346464 sequences. (Running on oeis4.)