OFFSET
1,1
COMMENTS
a(n) satisfies a complicated linear recurrence, but the values given were generated using BDDs.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..100
Eric Weisstein's World of Mathematics, Flower Snark.
Eric Weisstein's World of Mathematics, Maximal Independent Edge Set.
Wikipedia, Binary decision diagram
Wikipedia, Flower snark
Wikipedia, Line graph
Wikipedia, Maximal independent set
Index entries for linear recurrences with constant coefficients, signature (2,14,16,-56,-95,110,301,-17,-206,-123,185,182,6,-180,-52,56,8).
FORMULA
Empirical g.f.: x*(2 + 28*x + 48*x^2 - 224*x^3 - 475*x^4 + 660*x^5 + 2107*x^6 - 136*x^7 - 1854*x^8 - 1230*x^9 + 2035*x^10 + 2184*x^11 + 78*x^12 - 2520*x^13 - 780*x^14 + 896*x^15 + 136*x^16) / ((1 + x - 2*x^2 - x^3 + 4*x^4 - 2*x^5)*(1 - x - 2*x^2 + x^3 + 4*x^4 + 2*x^5)*(1 - 2*x - 9*x^2 - 26*x^3 - 3*x^4 - 7*x^5 + 14*x^6 + 2*x^7)). - Colin Barker, May 17 2017
a(n) = 2*a(n-1)+14*a(n-2)+16*a(n-3)-56*a(n-4)-95*a(n-5)+110*a(n-6)+301*a(n-7)-17*a(n-8)-206*a(n-9)-123*a(n-10)+185*a(n-11)+182*a(n-12)+6*a(n-13)-180*a(n-14)-52*a(n-15)+56*a(n-16)+8*a(n-17). - Eric W. Weisstein, Jul 11 2024
MATHEMATICA
LinearRecurrence[{2, 14, 16, -56, -95, 110, 301, -17, -206, -123, 185, 182, 6, -180, -52, 56, 8}, {2, 32, 140, 536, 2957, 14336, 70093, 348872, 1715054, 8450987, 41686977, 205360652, 1012222733, 4988885171, 24586626155, 121177096088, 597218222596}, 20] (* Eric W. Weisstein, Jul 11 2024 *)
CoefficientList[Series[(2 + 28 x + 48 x^2 - 224 x^3 - 475 x^4 + 660 x^5 + 2107 x^6 - 136 x^7 - 1854 x^8 - 1230 x^9 + 2035 x^10 + 2184 x^11 + 78 x^12 - 2520 x^13 - 780 x^14 + 896 x^15 + 136 x^16)/((1 + x - 2 x^2 - x^3 + 4 x^4 - 2 x^5) (1 - x - 2 x^2 + x^3 + 4 x^4 + 2 x^5) (1 - 2 x - 9 x^2 - 26 x^3 - 3 x^4 - 7 x^5 + 14 x^6 + 2 x^7)), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 11 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Don Knuth, Jan 28 2014
EXTENSIONS
a(14)-a(24) from Andrew Howroyd, May 17 2017
STATUS
approved