login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236550
The number of maximal independent sets in L(J_n), the line graph of the flower snark graph J_n.
2
2, 32, 140, 536, 2957, 14336, 70093, 348872, 1715054, 8450987, 41686977, 205360652, 1012222733, 4988885171, 24586626155, 121177096088, 597218222596, 2943376144478, 14506420142318, 71494667792051, 352360599502366, 1736605136729759, 8558836520137456, 42182122105754084
OFFSET
1,1
COMMENTS
a(n) satisfies a complicated linear recurrence, but the values given were generated using BDDs.
LINKS
Eric Weisstein's World of Mathematics, Flower Snark.
Eric Weisstein's World of Mathematics, Maximal Independent Edge Set.
Wikipedia, Flower snark
Wikipedia, Line graph
Index entries for linear recurrences with constant coefficients, signature (2,14,16,-56,-95,110,301,-17,-206,-123,185,182,6,-180,-52,56,8).
FORMULA
Empirical g.f.: x*(2 + 28*x + 48*x^2 - 224*x^3 - 475*x^4 + 660*x^5 + 2107*x^6 - 136*x^7 - 1854*x^8 - 1230*x^9 + 2035*x^10 + 2184*x^11 + 78*x^12 - 2520*x^13 - 780*x^14 + 896*x^15 + 136*x^16) / ((1 + x - 2*x^2 - x^3 + 4*x^4 - 2*x^5)*(1 - x - 2*x^2 + x^3 + 4*x^4 + 2*x^5)*(1 - 2*x - 9*x^2 - 26*x^3 - 3*x^4 - 7*x^5 + 14*x^6 + 2*x^7)). - Colin Barker, May 17 2017
a(n) = 2*a(n-1)+14*a(n-2)+16*a(n-3)-56*a(n-4)-95*a(n-5)+110*a(n-6)+301*a(n-7)-17*a(n-8)-206*a(n-9)-123*a(n-10)+185*a(n-11)+182*a(n-12)+6*a(n-13)-180*a(n-14)-52*a(n-15)+56*a(n-16)+8*a(n-17). - Eric W. Weisstein, Jul 11 2024
MATHEMATICA
LinearRecurrence[{2, 14, 16, -56, -95, 110, 301, -17, -206, -123, 185, 182, 6, -180, -52, 56, 8}, {2, 32, 140, 536, 2957, 14336, 70093, 348872, 1715054, 8450987, 41686977, 205360652, 1012222733, 4988885171, 24586626155, 121177096088, 597218222596}, 20] (* Eric W. Weisstein, Jul 11 2024 *)
CoefficientList[Series[(2 + 28 x + 48 x^2 - 224 x^3 - 475 x^4 + 660 x^5 + 2107 x^6 - 136 x^7 - 1854 x^8 - 1230 x^9 + 2035 x^10 + 2184 x^11 + 78 x^12 - 2520 x^13 - 780 x^14 + 896 x^15 + 136 x^16)/((1 + x - 2 x^2 - x^3 + 4 x^4 - 2 x^5) (1 - x - 2 x^2 + x^3 + 4 x^4 + 2 x^5) (1 - 2 x - 9 x^2 - 26 x^3 - 3 x^4 - 7 x^5 + 14 x^6 + 2 x^7)), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 11 2024 *)
CROSSREFS
A236549 enumerates _all_ independent sets and gives further explanation.
Sequence in context: A112850 A123105 A123287 * A012642 A244730 A169833
KEYWORD
nonn
AUTHOR
Don Knuth, Jan 28 2014
EXTENSIONS
a(14)-a(24) from Andrew Howroyd, May 17 2017
STATUS
approved