login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112850
Number of graph endomorphisms of undirected cycles of even length: |End(C_2n)|.
2
2, 32, 132, 576, 2540, 11112, 48076, 205952, 875196, 3695160, 15519548, 64899792, 270415652, 1123264856, 4653525660, 19234572544, 79342611548, 326704870872, 1343120024476, 5513861152880, 22606830726564, 92580354403768, 378737813469692, 1547884976788896, 6320530321887700, 25787763713301512
OFFSET
1,1
REFERENCES
M. A. Michels, About The Structure of Graph Endomorphisms, Diploma thesis, University of Oldenburg, Germany, 2005
LINKS
M. A. Michels and U. Knauer, The congruence classes of paths and cycles, Discrete Math., 309 (2009), 5352-5359. [N. J. A. Sloane, Sep 15 2009]
FORMULA
|End(C_2n)| = 2n*(2 + binomial(2n-1, n-1) + binomial(2n-1, n)) for n > 1.
MATHEMATICA
Join[{2}, Table[2 n (2 + Binomial[2 n - 1, n - 1] + Binomial[2 n - 1, n]), {n, 2, 25}]] (* Vincenzo Librandi, Nov 21 2018 *)
PROG
(Magma) [2] cat [2*n*(2 + Binomial(2*n-1, n-1) + Binomial(2*n-1, n)): n in [2..30]]; // Vincenzo Librandi, Nov 21 2018
CROSSREFS
Cf. A112849.
Sequence in context: A257965 A191997 A274654 * A123105 A123287 A236550
KEYWORD
easy,nonn
AUTHOR
Martin Alexander Michels (martinmichels(AT)t-online.de), Sep 24 2005
EXTENSIONS
Corrected first term from 4 to 2 and added "n > 1" in the formula, which is not correct when n=1. - James D. Mitchell (jdm3(AT)st-and.ac.uk), Sep 21 2010
STATUS
approved