login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*Sum_{k=0..n-1} C(n-1,k)*C(n+k,k) + n.
1

%I #17 Jun 01 2017 13:26:34

%S 0,3,10,41,196,1007,5342,28821,157192,864155,4780018,26572097,

%T 148321356,830764807,4666890950,26283115053,148348809232,838944980531,

%U 4752575891162,26964373486425,153196621856212,871460014012703,4962895187697070,28292329581548741

%N a(n) = 2*Sum_{k=0..n-1} C(n-1,k)*C(n+k,k) + n.

%H G. C. Greubel, <a href="/A236407/b236407.txt">Table of n, a(n) for n = 0..1000</a>

%H J. Brzozowski, M. Szykula, <a href="http://arxiv.org/abs/1401.0157">Large Aperiodic Semigroups</a>, arXiv:1401.0157 [cs.FL], 2013 (Tables 1, 2).

%F a(n) = A002003(n) + n.

%F Conjecture: n*(n-3)*a(n) -4*(2*n-1)*(n-3)*a(n-1) +2*(7*n^2-28*n+20)*a(n-2) -4*(n-1)*(2*n-7)*a(n-3) +(n-1)*(n-4)*a(n-4)=0. - _R. J. Mathar_, Feb 01 2014

%F Recurrence: (n-2)*n*(2*n^2 - 8*n + 7)*a(n) = (14*n^4 - 88*n^3 + 189*n^2 - 158*n + 39)*a(n-1) - (14*n^4 - 80*n^3 + 153*n^2 - 112*n + 24)*a(n-2) + (n-3)*(n-1)*(2*n^2 - 4*n + 1)*a(n-3). - _Vaclav Kotesovec_, Feb 14 2014

%F a(n) ~ 2^(-3/4) * (3+2*sqrt(2))^n / sqrt(Pi*n). - _Vaclav Kotesovec_, Feb 14 2014

%t Table[2*Sum[Binomial[n-1,k]*Binomial[n+k,k],{k,0,n-1}]+n,{n,0,20}] (* _Vaclav Kotesovec_, Feb 14 2014 *)

%t Flatten[{0,Table[n+2*Hypergeometric2F1[1-n,1+n,1,-1],{n,1,20}]}] (* _Vaclav Kotesovec_, Feb 14 2014 *)

%o (PARI) for(n=0,25, print1(n + 2*sum(k=0,n-1, binomial(n-1,k) * binomial(n+k,k)), ", ")) \\ _G. C. Greubel_, Jun 01 2017

%Y Cf. A002003.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Jan 31 2014