login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236407
a(n) = 2*Sum_{k=0..n-1} C(n-1,k)*C(n+k,k) + n.
1
0, 3, 10, 41, 196, 1007, 5342, 28821, 157192, 864155, 4780018, 26572097, 148321356, 830764807, 4666890950, 26283115053, 148348809232, 838944980531, 4752575891162, 26964373486425, 153196621856212, 871460014012703, 4962895187697070, 28292329581548741
OFFSET
0,2
LINKS
J. Brzozowski, M. Szykula, Large Aperiodic Semigroups, arXiv:1401.0157 [cs.FL], 2013 (Tables 1, 2).
FORMULA
a(n) = A002003(n) + n.
Conjecture: n*(n-3)*a(n) -4*(2*n-1)*(n-3)*a(n-1) +2*(7*n^2-28*n+20)*a(n-2) -4*(n-1)*(2*n-7)*a(n-3) +(n-1)*(n-4)*a(n-4)=0. - R. J. Mathar, Feb 01 2014
Recurrence: (n-2)*n*(2*n^2 - 8*n + 7)*a(n) = (14*n^4 - 88*n^3 + 189*n^2 - 158*n + 39)*a(n-1) - (14*n^4 - 80*n^3 + 153*n^2 - 112*n + 24)*a(n-2) + (n-3)*(n-1)*(2*n^2 - 4*n + 1)*a(n-3). - Vaclav Kotesovec, Feb 14 2014
a(n) ~ 2^(-3/4) * (3+2*sqrt(2))^n / sqrt(Pi*n). - Vaclav Kotesovec, Feb 14 2014
MATHEMATICA
Table[2*Sum[Binomial[n-1, k]*Binomial[n+k, k], {k, 0, n-1}]+n, {n, 0, 20}] (* Vaclav Kotesovec, Feb 14 2014 *)
Flatten[{0, Table[n+2*Hypergeometric2F1[1-n, 1+n, 1, -1], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 14 2014 *)
PROG
(PARI) for(n=0, 25, print1(n + 2*sum(k=0, n-1, binomial(n-1, k) * binomial(n+k, k)), ", ")) \\ G. C. Greubel, Jun 01 2017
CROSSREFS
Cf. A002003.
Sequence in context: A260772 A325059 A116540 * A000248 A245504 A305405
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 31 2014
STATUS
approved