login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236377
Real part of Sum_{k=0..n} (k + i^k)^2, where i=sqrt(-1).
2
1, 1, 2, 10, 35, 59, 84, 132, 213, 293, 374, 494, 663, 831, 1000, 1224, 1513, 1801, 2090, 2450, 2891, 3331, 3772, 4300, 4925, 5549, 6174, 6902, 7743, 8583, 9424, 10384, 11473, 12561, 13650, 14874, 16243, 17611, 18980, 20500, 22181, 23861, 25542, 27390
OFFSET
0,3
COMMENTS
Corresponding imaginary parts: -i^(n*(n+1))*A052928(n+1).
FORMULA
G.f.: (1 - 2*x + 3*x^2 + 4*x^3 + 11*x^4 - 10*x^5 + 9*x^6)/((1 + x)*(1 + x^2)^2*(1 - x)^4).
a(n) = 3*a(n-1) -4*a(n-2) +4*a(n-3) -2*a(n-4) -2*a(n-5) +4*a(n-6) -4*a(n-7) +3*a(n-8) -a(n-9).
a(n) = A000330(n) + A127630(n) - A000035(n).
EXAMPLE
For n=6, sum_(k=0)^6 (k + i^k)^2 = 84 + 6*i, therefore a(6) = 84.
MATHEMATICA
LinearRecurrence[{3, -4, 4, -2, -2, 4, -4, 3, -1}, {1, 1, 2, 10, 35, 59, 84, 132, 213}, 50]
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x+3*x^2+4*x^3+11*x^4-10*x^5+9*x^6)/((1+x)*(1+x^2)^2*(1-x)^4)));
CROSSREFS
Cf. A058373: real part of Sum_{k=0..n} (k + i)^2.
Sequence in context: A356389 A318696 A116898 * A197556 A295133 A100230
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 24 2014
STATUS
approved