login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First differences of Stanley sequence S(0,4) (A005487).
3

%I #17 Feb 07 2014 05:35:52

%S 4,1,2,4,1,4,7,3,5,2,4,1,6,5,7,17,5,2,5,10,4,7,18,4,3,5,7,26,19,9,6,

%T 17,1,5,1,11,9,12,10,7,8,3,15,6,2,3,6,18,48,7,5,25,12,21,11,4,21,2,6,

%U 5,50,5,21,18,30,1,6,5,4,6,4,1,2,20,10,4,24,3,13,5

%N First differences of Stanley sequence S(0,4) (A005487).

%C Also first differences of Stanley sequence S(1,5) (A033158).

%C While there are conjectures about formulas for S(0,m), m=1,2,3,6,9... (see A093682), m=4 is the first case where the first differences look almost random.

%C Records are 4, 7, 17, 18, 26, 48, 50, 55, 76, 87, 92, 93, 165, 175,...

%C Positions of records are 1, 7, 16, 23, 28, 49, 61, 81, 83, 101, 147, 165, 185, 250, 400,...

%C Positions where a(n)=1: 2, 5, 12, 33, 35, 66, 72, 94, 125, 160, 189, 288, 307, 327,...

%H Ralf Stephan, <a href="/A236269/b236269.txt">Table of n, a(n) for n = 1..4650</a>

%o (PARI) NAP(sv,N)=local(v,vv,m,k,l,sl,vvl);sl=length(sv);vvl=min(N*N,10^5);v=vector(N);vv=vector(vvl);for(k=1,sl,v[k]=sv[k];for(l=1,k-1,vv[2*v[k]-v[l]]=1));m=v[sl]+1;for(k=sl+1,N,while(m<=vvl&&vv[m],m=m+1);if(m>vvl,return(v));for(l=1,k-1,sl=2*m-v[l];if(sl<=vvl,vv[sl]=1));vv[m]=1;v[k]=m);v

%o S04(n)=N=1000;NAP([0,4],N)[n]

%o a(n)=S04(n+1)-S04(n)

%K nonn

%O 1,1

%A _Ralf Stephan_, Jan 21 2014