Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Aug 04 2024 12:31:16
%S 121,484,10201,10816,40804,72900,1002001,1008016,3059001,4008004,
%T 100020001,100080016,151290000,210250000,216090000,234090000,
%U 313290000,400080004,10000200001,10000800016,10210900401,11003800201,11020800400,14101800001,30101903001,30310810000
%N Let x(1)x(2)... x(q) denote the decimal expansion of a number n with q odd. The sequence lists the squares n such that the central digit equals the sum of the other digits.
%C The numbers that are both perfect squares and palindromes (A033934) are in the sequence. The numbers 104^2, 1004^2, 10004^2,... are in the sequence.
%e 10201 = 101^2 is in the sequence because the central digit 2 equals the sum of the other digits 1+0+0+1.
%p with(numtheory):for n from 2 to 6 do:m:=2*n-2:m1:=floor(sqrt(10^m)):m2:=floor(sqrt(10^(m+1)-1)):for k1 from m1 to m2 do:k:=k1^2:x:=convert(k,base,10):n1:=nops(x):s:=sum('x[j]', 'j'=1..n1):s1:=s-x[n]:if x[n]=s1 then printf(`%d, `,k):else fi:od:od:
%t cdodQ[n_]:=Module[{id=IntegerDigits[n],len,cd},len=Length[id];cd=If[OddQ[len],id[[(len+1)/2]],9999]; Total[id]-cd==cd]; Select[Range[175000]^2,cdodQ] (* _Harvey P. Dale_, Aug 04 2024 *)
%Y Cf. A000290, A033934.
%K nonn,base
%O 1,1
%A _Michel Lagneau_, Jan 19 2014