

A236181


Let x(1)x(2)... x(q) denote the decimal expansion of a number n with q odd. The sequence lists the squares n such that the central digit equals the sum of the other digits.


0



121, 484, 10201, 10816, 40804, 72900, 1002001, 1008016, 3059001, 4008004, 100020001, 100080016, 151290000, 210250000, 216090000, 234090000, 313290000, 400080004, 10000200001, 10000800016, 10210900401, 11003800201, 11020800400, 14101800001, 30101903001, 30310810000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The numbers that are both perfect squares and palindromes (A033934) are in the sequence. The numbers 104^2, 1004^2, 10004^2,... are in the sequence.


LINKS

Table of n, a(n) for n=1..26.


EXAMPLE

10201 = 101^2 is in the sequence because the central digit 2 equals the sum of the other digits 1+0+0+1.


MAPLE

with(numtheory):for n from 2 to 6 do:m:=2*n2:m1:=floor(sqrt(10^m)):m2:=floor(sqrt(10^(m+1)1)):for k1 from m1 to m2 do:k:=k1^2:x:=convert(k, base, 10):n1:=nops(x):s:=sum('x[j]', 'j'=1..n1):s1:=sx[n]:if x[n]=s1 then printf(`%d, `, k):else fi:od:od:


CROSSREFS

Cf. A000290, A033934.
Sequence in context: A062555 A017390 A110722 * A077432 A017654 A183448
Adjacent sequences: A236178 A236179 A236180 * A236182 A236183 A236184


KEYWORD

nonn,base


AUTHOR

Michel Lagneau, Jan 19 2014


STATUS

approved



