login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236181
Let x(1)x(2)... x(q) denote the decimal expansion of a number n with q odd. The sequence lists the squares n such that the central digit equals the sum of the other digits.
0
121, 484, 10201, 10816, 40804, 72900, 1002001, 1008016, 3059001, 4008004, 100020001, 100080016, 151290000, 210250000, 216090000, 234090000, 313290000, 400080004, 10000200001, 10000800016, 10210900401, 11003800201, 11020800400, 14101800001, 30101903001, 30310810000
OFFSET
1,1
COMMENTS
The numbers that are both perfect squares and palindromes (A033934) are in the sequence. The numbers 104^2, 1004^2, 10004^2,... are in the sequence.
EXAMPLE
10201 = 101^2 is in the sequence because the central digit 2 equals the sum of the other digits 1+0+0+1.
MAPLE
with(numtheory):for n from 2 to 6 do:m:=2*n-2:m1:=floor(sqrt(10^m)):m2:=floor(sqrt(10^(m+1)-1)):for k1 from m1 to m2 do:k:=k1^2:x:=convert(k, base, 10):n1:=nops(x):s:=sum('x[j]', 'j'=1..n1):s1:=s-x[n]:if x[n]=s1 then printf(`%d, `, k):else fi:od:od:
MATHEMATICA
cdodQ[n_]:=Module[{id=IntegerDigits[n], len, cd}, len=Length[id]; cd=If[OddQ[len], id[[(len+1)/2]], 9999]; Total[id]-cd==cd]; Select[Range[175000]^2, cdodQ] (* Harvey P. Dale, Aug 04 2024 *)
CROSSREFS
Sequence in context: A062555 A017390 A110722 * A077432 A017654 A183448
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Jan 19 2014
STATUS
approved