Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jul 31 2022 17:10:41
%S 3,6,21,456,1365,2205,2451,2730,8541,18486,32199,32319,32781,45864,
%T 61215,72555,72561,82146,83259,86604,91371,95199,125334,149331,176889,
%U 182910,185535,210846,225666,226254,288420,343161,350091,403941,411501,510399,567204
%N Numbers k such that k^2 +- k +- 1 is prime for all four possibilities.
%C The only prime in this sequence is a(1) = 3.
%e 1365^2 + 1365 + 1 = 1864591,
%e 1365^2 + 1365 - 1 = 1864589,
%e 1365^2 - 1365 + 1 = 1861861, and
%e 1365^2 - 1365 - 1 = 1861859 are all prime, so 1365 is a term of this sequence.
%p q:= k-> andmap(isprime, [seq(seq(k^2+i+j, j=[k, -k]), i=[1, -1])]):
%p select(q, [3*t$t=1..200000])[]; # _Alois P. Heinz_, Feb 25 2020
%t Select[Range[568000],AllTrue[Flatten[{#^2+#+{1,-1},#^2-#+{1,-1}},1],PrimeQ]&] (* _Harvey P. Dale_, Jul 31 2022 *)
%o (Python)
%o import sympy
%o from sympy import isprime
%o {print(p) for p in range(10**6) if isprime(p**2+p+1) and isprime(p**2-p+1) and isprime(p**2+p-1) and isprime(p**2-p-1)}
%Y Numbers in the intersection of A002384, A045546, A055494, and A002328.
%Y Numbers in the intersection of A131530 and A088485.
%K nonn
%O 1,1
%A _Derek Orr_, Jan 18 2014