The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236056 Numbers k such that k^2 +- k +- 1 is prime for all four possibilities. 2
 3, 6, 21, 456, 1365, 2205, 2451, 2730, 8541, 18486, 32199, 32319, 32781, 45864, 61215, 72555, 72561, 82146, 83259, 86604, 91371, 95199, 125334, 149331, 176889, 182910, 185535, 210846, 225666, 226254, 288420, 343161, 350091, 403941, 411501, 510399, 567204 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The only prime in this sequence is a(1) = 3. LINKS Table of n, a(n) for n=1..37. EXAMPLE 1365^2 + 1365 + 1 = 1864591, 1365^2 + 1365 - 1 = 1864589, 1365^2 - 1365 + 1 = 1861861, and 1365^2 - 1365 - 1 = 1861859 are all prime, so 1365 is a term of this sequence. MAPLE q:= k-> andmap(isprime, [seq(seq(k^2+i+j, j=[k, -k]), i=[1, -1])]): select(q, [3*t\$t=1..200000])[]; # Alois P. Heinz, Feb 25 2020 MATHEMATICA Select[Range[568000], AllTrue[Flatten[{#^2+#+{1, -1}, #^2-#+{1, -1}}, 1], PrimeQ]&] (* Harvey P. Dale, Jul 31 2022 *) PROG (Python) import sympy from sympy import isprime {print(p) for p in range(10**6) if isprime(p**2+p+1) and isprime(p**2-p+1) and isprime(p**2+p-1) and isprime(p**2-p-1)} CROSSREFS Numbers in the intersection of A002384, A045546, A055494, and A002328. Numbers in the intersection of A131530 and A088485. Sequence in context: A019054 A066986 A096662 * A347616 A280116 A295578 Adjacent sequences: A236053 A236054 A236055 * A236057 A236058 A236059 KEYWORD nonn AUTHOR Derek Orr, Jan 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 14 02:38 EDT 2024. Contains 374291 sequences. (Running on oeis4.)