login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236056
Numbers k such that k^2 +- k +- 1 is prime for all four possibilities.
2
3, 6, 21, 456, 1365, 2205, 2451, 2730, 8541, 18486, 32199, 32319, 32781, 45864, 61215, 72555, 72561, 82146, 83259, 86604, 91371, 95199, 125334, 149331, 176889, 182910, 185535, 210846, 225666, 226254, 288420, 343161, 350091, 403941, 411501, 510399, 567204
OFFSET
1,1
COMMENTS
The only prime in this sequence is a(1) = 3.
EXAMPLE
1365^2 + 1365 + 1 = 1864591,
1365^2 + 1365 - 1 = 1864589,
1365^2 - 1365 + 1 = 1861861, and
1365^2 - 1365 - 1 = 1861859 are all prime, so 1365 is a term of this sequence.
MAPLE
q:= k-> andmap(isprime, [seq(seq(k^2+i+j, j=[k, -k]), i=[1, -1])]):
select(q, [3*t$t=1..200000])[]; # Alois P. Heinz, Feb 25 2020
MATHEMATICA
Select[Range[568000], AllTrue[Flatten[{#^2+#+{1, -1}, #^2-#+{1, -1}}, 1], PrimeQ]&] (* Harvey P. Dale, Jul 31 2022 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(p) for p in range(10**6) if isprime(p**2+p+1) and isprime(p**2-p+1) and isprime(p**2+p-1) and isprime(p**2-p-1)}
CROSSREFS
Numbers in the intersection of A002384, A045546, A055494, and A002328.
Numbers in the intersection of A131530 and A088485.
Sequence in context: A019054 A066986 A096662 * A347616 A280116 A295578
KEYWORD
nonn
AUTHOR
Derek Orr, Jan 18 2014
STATUS
approved