login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235962
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with the difference of the upper and lower median value of each 2X2 subblock in lexicographically nondecreasing order columnwise and nonincreasing rowwise
7
16, 50, 50, 144, 228, 144, 398, 928, 928, 398, 1076, 3574, 5196, 3574, 1076, 2866, 13346, 27296, 27296, 13346, 2866, 7560, 48848, 137988, 195428, 137988, 48848, 7560, 19798, 176420, 681546, 1340034, 1340034, 681546, 176420, 19798, 51580, 631130
OFFSET
1,1
COMMENTS
Table starts
.....16......50.......144.........398.........1076...........2866
.....50.....228.......928........3574........13346..........48848
....144.....928......5196.......27296.......137988.........681546
....398....3574.....27296......195428......1340034........8974124
...1076...13346....137988.....1340034.....12412248......112308598
...2866...48848....681546.....8974124....112308598.....1374773712
...7560..176420...3311312....59037352....997114552....16500794898
..19798..631130..15908352...383935642...8749889970...195824119834
..51580.2242678..75789960..2474858156..76070757246..2302059880080
.133850.7930164.358924192.15855538026.657191443192.26894984140858
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -a(n-2) -10*a(n-3) +8*a(n-4)
k=2: [order 8]
k=3: [order 17]
k=4: [order 32]
k=5: [order 67]
EXAMPLE
Some solutions for n=4 k=4
..1..0..0..0..0....0..1..1..1..0....0..0..0..0..0....0..1..1..0..1
..0..0..0..1..1....0..0..1..1..0....0..0..0..1..1....0..0..1..1..0
..0..0..1..1..1....0..1..1..1..0....0..0..0..0..0....0..1..1..1..1
..1..0..0..1..1....1..1..1..1..1....0..0..1..0..1....0..0..1..1..1
..0..0..0..0..1....0..1..0..1..0....1..0..0..0..0....1..0..0..1..1
CROSSREFS
Column 1 is A235566
Sequence in context: A153483 A030686 A030688 * A235573 A186850 A235566
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 17 2014
STATUS
approved