login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G-cyclic numbers k such that A060968(k)^A060968(k) <> 1 (mod k) and A235863(k)^A235863(k) <> 1 (mod k).
1

%I #31 Aug 21 2021 16:35:29

%S 77,119,133,187,217,253,287,301,319,323,341,391,399,403,407,413,437,

%T 469,517,551,553,559,583,589,623,651,667,707,713,731,737,749,779,781,

%U 803,817,851,869,871,889,893,899,903,913,917,935,943,959,969,1001,1003

%N G-cyclic numbers k such that A060968(k)^A060968(k) <> 1 (mod k) and A235863(k)^A235863(k) <> 1 (mod k).

%C For G-cyclic numbers see A235866.

%C All terms are composite. - _Bill McEachen_, Jul 16 2021

%H Bill McEachen, <a href="/A235867/b235867.txt">Table of n, a(n) for n = 1..10000</a>

%H Jose María Grau, A. M. Oller-Marcen, Manuel Rodriguez and D. Sadornil, <a href="http://arxiv.org/abs/1401.4708">Fermat test with Gaussian base and Gaussian pseudoprimes</a>, arXiv:1401.4708 [math.NT], 2014.

%o (PARI) genit(maxx)={arr2=List();arr=List();for(ptr=1,maxx,if( gcd(ptr,A060968(ptr))==1,listput(arr,ptr)));for(ptr=2,#arr,n=arr[ptr];a=A060968(n)^A060968(n);b=A235863(n)^A235863(n);if(a%n!=1&&b%n!=1,listput(arr2,n)));}

%o A060968(n)={my(f=factor(n)[,1]);q=n*prod(i=if(n%2,1,2),#f,if(f[i]%4==1,1-1/f[i],1+1/f[i]))*if(n%4,1,2);return(q);} \\taken from that sequence

%o A235863(n)={my(f=factor(n));q=lcm(vector(#f~,i,my([p,e]=f[i,]);if(p==2,2^max(e-2,min(e,2)),p^(e-1)*if(p%4==1,p-1,p+1))));return (q);} \\taken from that sequence

%o \\ _Bill McEachen_, Jul 16 2021

%Y Cf. A235866, A060968, A235863.

%K nonn

%O 1,1

%A _José María Grau Ribas_, Feb 22 2014