login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235772
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with the sum of each 2X2 subblock two extreme terms minus its two median terms lexicographically nondecreasing columnwise and nonincreasing rowwise
6
16, 46, 46, 120, 178, 120, 288, 628, 628, 288, 660, 1948, 2994, 1948, 660, 1456, 5643, 12417, 12417, 5643, 1456, 3136, 15185, 47501, 70752, 47501, 15185, 3136, 6624, 39029, 166904, 377890, 377890, 166904, 39029, 6624, 13808, 95779, 552444, 1874171
OFFSET
1,1
COMMENTS
Table starts
....16.....46......120.......288.........660.........1456..........3136
....46....178......628......1948........5643........15185.........39029
...120....628.....2994.....12417.......47501.......166904........552444
...288...1948....12417.....70752......377890......1874171.......8783904
...660...5643....47501....377890.....2931878.....21858973.....157282139
..1456..15185...166904...1874171....21858973....256515598....3001277411
..3136..39029...552444...8783904...157282139...3001277411...59502624140
..6624..95779..1724793..38884279..1084189363..34219649525.1172336263809
.13808.227803..5144350.163704284..7146773223.377305772901
.28480.525427.14696712.657363226.45042182253
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +4*a(n-2) -8*a(n-3) -4*a(n-4) +8*a(n-5)
k=2: [order 15]
k=3: [order 37]
k=4: [order 88]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..1..0....0..1..1..0..0....0..0..0..0..0....0..0..0..0..1
..1..1..0..0..0....1..1..1..0..0....0..0..0..0..1....1..1..1..0..0
..0..0..1..1..1....1..0..1..1..1....0..0..0..0..1....0..1..1..0..1
..1..1..1..0..1....1..1..1..0..0....1..1..1..1..1....1..1..0..1..1
..1..0..0..0..0....1..0..1..1..1....0..1..0..1..1....0..1..1..0..1
CROSSREFS
Column 1 is A235549
Sequence in context: A318093 A223029 A244343 * A235555 A069128 A099003
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 15 2014
STATUS
approved