login
A235555
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with the sum of each 2X2 subblock two extreme terms minus its two median terms lexicographically nondecreasing rowwise and columnwise
7
16, 46, 46, 120, 202, 120, 288, 814, 814, 288, 660, 2878, 5567, 2878, 660, 1456, 9320, 33851, 33851, 9320, 1456, 3136, 27731, 184281, 378570, 184281, 27731, 3136, 6624, 77606, 892122, 3824372, 3824372, 892122, 77606, 6624, 13808, 205571, 3925717
OFFSET
1,1
COMMENTS
Table starts
....16......46.......120.........288...........660...........1456
....46.....202.......814........2878..........9320..........27731
...120.....814......5567.......33851........184281.........892122
...288....2878.....33851......378570.......3824372.......33823017
...660....9320....184281.....3824372......74362722.....1271453587
..1456...27731....892122....33823017....1271453587....42883865335
..3136...77606...3925717...265989722...19182239308..1280647786349
..6624..205571..15834473..1875119528..256273383832.33729294480195
.13808..522118..59506551.12064334056.3086943812776
.28480.1277701.209811804.71470709789
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +4*a(n-2) -8*a(n-3) -4*a(n-4) +8*a(n-5)
k=2: [order 19]
k=3: [order 55]
EXAMPLE
Some solutions for n=3 k=4
..1..1..1..0..0....0..1..0..1..0....1..1..0..0..0....1..1..0..1..0
..1..0..0..1..0....1..1..1..1..1....0..1..1..1..1....0..1..1..1..1
..1..1..0..0..0....0..1..1..1..1....1..0..0..1..1....1..0..0..0..0
..0..0..1..0..1....0..0..1..0..1....0..0..1..0..0....0..1..0..1..0
CROSSREFS
Sequence in context: A223029 A244343 A235772 * A069128 A099003 A124709
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 12 2014
STATUS
approved