|
|
A235710
|
|
Composite numbers n such that sum of the proper divisors of n is a power of 10.
|
|
0
|
|
|
14, 124, 194, 1324, 1994, 13324, 133324, 1130324, 1333324, 13333324, 62496048, 133333324, 92782317392
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Composite numbers n such that reversal(sigma(n)-n))=1.
If n is prime then sum of the proper divisors of n is 10^0.
If m is a natural number and p=10^m-3 is prime then 2*p is in the sequence.
If m is a natural number and p=(10^m-7)/3 is prime then 4*p is in the sequence.
|
|
LINKS
|
|
|
EXAMPLE
|
sigma(14)-14 = 1+2+7 = 10, sigma(124)-124 = 1+2+4+31+62 = 100.
|
|
MATHEMATICA
|
r[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; Do[If[!PrimeQ[n]&& r[DivisorSigma[1, n]-n]==1, Print[n]], {n, 200000000}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|