login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies: A'(x) = A(x)^5 * A(-x)^2 with A(0) = 1.
1

%I #10 Jun 01 2017 03:09:38

%S 1,1,3,23,201,2785,40635,811895,16629585,433628545,11445940275,

%T 368037044375,11895934275225,454683830425825,17395789407271275,

%U 770304889659680375,34049461218930782625,1713856100186247642625,85952505988900976299875,4846232366161595854820375

%N E.g.f. satisfies: A'(x) = A(x)^5 * A(-x)^2 with A(0) = 1.

%H G. C. Greubel, <a href="/A235360/b235360.txt">Table of n, a(n) for n = 0..380</a>

%F E.g.f.: 1/sqrt(1 - 2*Series_Reversion( Integral 1 - 4*x^2 dx )).

%F E.g.f.: 1/(1 - Series_Reversion( Integral (1-x)^3*(1+2*x-x^2) dx )).

%F a(n) ~ n! * GAMMA(3/4) * 3^(n+1/4) / (2^(3/4) * Pi * n^(3/4)) * (1 + sqrt(3)*Pi / (72*sqrt(n)*GAMMA(3/4)^2) - (-1)^n*3^(1/4)*2^(3/4)*sqrt(Pi) / (24*n^(3/4)*GAMMA(3/4))). - _Vaclav Kotesovec_, Jan 27 2014

%e E.g.f.: A(x) = 1 + x + 3*x^2/2! + 23*x^3/3! + 201*x^4/4! + 2785*x^5/5! +...

%e Related series.

%e A(x)^2 = 1 + 2*x + 8*x^2/2! + 64*x^3/3! + 640*x^4/4! + 8960*x^5/5! +...

%e A(x)^5 = 1 + 5*x + 35*x^2/2! + 355*x^3/3! + 4585*x^4/4! + 73445*x^5/5! +...

%e Note that 1 - 1/A(x)^2 is an odd function that begins:

%e 1 - 1/A(x)^2 = 2*x + 16*x^3/3! + 1280*x^5/5! + 286720*x^7/7! + 126156800*x^9/9! +...

%e such that Series_Reversion( (1 - 1/A(x)^2)/2 ) = x - 4*x^3/3.

%t CoefficientList[1/Sqrt[1-2*InverseSeries[Series[x-4*x^3/3, {x, 0, 20}], x]],x]*Range[0, 20]! (* _Vaclav Kotesovec_, Jan 27 2014 *)

%o (PARI) /* By definition A'(x) = A(x)^5 * A(-x)^2: */

%o {a(n)=local(A=1); for(i=0, n, A=1+intformal(A^5*subst(A, x, -x)^2 +x*O(x^n) )); n!*polcoeff(A, n)}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {a(n)=local(A=1); A=1/sqrt(1-2*serreverse(intformal(1-4*x^2 +x*O(x^n) ))); n!*polcoeff(A,n)}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {a(n)=local(A=1); A=1/(1 -serreverse( intformal((1-x)^3*(1+2*x-x^2) +x*O(x^n) ))); n!*polcoeff(A,n)}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A235359, A234313.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 07 2014