login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235360
E.g.f. satisfies: A'(x) = A(x)^5 * A(-x)^2 with A(0) = 1.
1
1, 1, 3, 23, 201, 2785, 40635, 811895, 16629585, 433628545, 11445940275, 368037044375, 11895934275225, 454683830425825, 17395789407271275, 770304889659680375, 34049461218930782625, 1713856100186247642625, 85952505988900976299875, 4846232366161595854820375
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 1/sqrt(1 - 2*Series_Reversion( Integral 1 - 4*x^2 dx )).
E.g.f.: 1/(1 - Series_Reversion( Integral (1-x)^3*(1+2*x-x^2) dx )).
a(n) ~ n! * GAMMA(3/4) * 3^(n+1/4) / (2^(3/4) * Pi * n^(3/4)) * (1 + sqrt(3)*Pi / (72*sqrt(n)*GAMMA(3/4)^2) - (-1)^n*3^(1/4)*2^(3/4)*sqrt(Pi) / (24*n^(3/4)*GAMMA(3/4))). - Vaclav Kotesovec, Jan 27 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 23*x^3/3! + 201*x^4/4! + 2785*x^5/5! +...
Related series.
A(x)^2 = 1 + 2*x + 8*x^2/2! + 64*x^3/3! + 640*x^4/4! + 8960*x^5/5! +...
A(x)^5 = 1 + 5*x + 35*x^2/2! + 355*x^3/3! + 4585*x^4/4! + 73445*x^5/5! +...
Note that 1 - 1/A(x)^2 is an odd function that begins:
1 - 1/A(x)^2 = 2*x + 16*x^3/3! + 1280*x^5/5! + 286720*x^7/7! + 126156800*x^9/9! +...
such that Series_Reversion( (1 - 1/A(x)^2)/2 ) = x - 4*x^3/3.
MATHEMATICA
CoefficientList[1/Sqrt[1-2*InverseSeries[Series[x-4*x^3/3, {x, 0, 20}], x]], x]*Range[0, 20]! (* Vaclav Kotesovec, Jan 27 2014 *)
PROG
(PARI) /* By definition A'(x) = A(x)^5 * A(-x)^2: */
{a(n)=local(A=1); for(i=0, n, A=1+intformal(A^5*subst(A, x, -x)^2 +x*O(x^n) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); A=1/sqrt(1-2*serreverse(intformal(1-4*x^2 +x*O(x^n) ))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); A=1/(1 -serreverse( intformal((1-x)^3*(1+2*x-x^2) +x*O(x^n) ))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A096649 A370283 A235131 * A135423 A114017 A316085
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 07 2014
STATUS
approved