%I #8 Jun 19 2022 02:19:00
%S 512,1544,4724,15604,51144,176104,597712,2109748,7324940,26321996,
%T 92931536,338626216,1211027400,4461593140,16115753860,59891994316,
%U 218009580968,815799341144,2987272973648,11239524639028,41346560068716
%N Number of (n+1) X (2+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
%H R. H. Hardin, <a href="/A235192/b235192.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 6*a(n-1) +52*a(n-2) -367*a(n-3) -995*a(n-4) +9350*a(n-5) +7034*a(n-6) -128869*a(n-7) +26637*a(n-8) +1045428*a(n-9) -801048*a(n-10) -5098437*a(n-11) +5754163*a(n-12) +14714982*a(n-13) -20381230*a(n-14) -23985995*a(n-15) +38063780*a(n-16) +20215810*a(n-17) -35199080*a(n-18) -8246780*a(n-19) +13170048*a(n-20) +2801112*a(n-21) -1572480*a(n-22) -393120*a(n-23).
%e Some solutions for n=4:
%e 4 1 4 5 6 3 4 2 6 2 3 0 6 2 6 6 3 5 1 5 1
%e 0 2 0 6 2 4 3 6 5 6 2 4 0 1 0 3 5 2 2 1 2
%e 6 3 6 3 4 1 2 0 4 2 3 0 6 2 6 5 2 4 0 4 0
%e 3 5 3 6 2 4 1 4 3 4 0 2 5 6 5 3 5 2 3 2 3
%e 5 2 5 4 5 2 4 2 6 5 6 3 4 0 4 5 2 4 6 0 6
%Y Column 2 of A235198.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 04 2014