OFFSET
0,2
COMMENTS
Note, as for all composite values A235145(u * v) = max(A235145(u), A235145(v)) which can be further reduced as A235145(n) = Max_{p|n} A235145(p), and because for any odd prime p, lpf(A056539(p)) >= 3 (where lpf = A020639, the least prime dividing n) while 1/2 < A056539(n)/n < 2, it follows that this sequence gives also the positions of the records in A235145, as its new values must appear in order.
Also, because of that multiplicativity criterion, all terms (after zero) must be primes, and specifically, the terms are a subset of A235030 (i.e., of A204219).
Conjecture: additional property is that the primes here belong to that subset of p in A204219 for which A056539(p) > p. The list of such primes begins as: 19, 79, 103, 137, 139, 149, 157, 179, 191, 239, 271, 281, 293, 311, 317, 347, 367, 379, 439, 523, 541, 547, 557, 563, 569, 587, 607, 613, 647, 659, 719, 733, 743, 751, 787, ...
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(PARI) revbits(n) = fromdigits(Vecrev(binary(n)), 2);
a235027(n) = {f = factor(n); for (k=1, #f~, if (f[k, 1] != 2, f[k, 1] = revbits(f[k, 1]); ); ); factorback(f); }
find(v, newn) = {for(k=1, #v, if (v[#v -k + 1] == newn, return (k)); ); return (0); }
a235145(n) = {ok = 0; v = [n]; while (! ok, newn = a235027(n); ind = find(v, newn); if (ind, ok = 1, v = concat(v, newn); n = newn); ); #v - ind; }
a(n) = {k = 0; while (a235145(k) != n, k = nextprime(k+1)); k; }
lista(nn) = {kprec = 0; for (n=0, nn, k = kprec; while (a235145(k) != n, k = nextprime(k+1)); print1(k, ", "); kprec = k; ); } \\ Michel Marcus, Aug 06 2017
CROSSREFS
KEYWORD
nonn,base,more,hard
AUTHOR
Antti Karttunen, Jan 03 2014
EXTENSIONS
a(5)-a(8) from Michel Marcus, Aug 06 2017
STATUS
approved