

A234932


The product a(n)*a(n+1) can be written using the digits of {a(n),a(n+1)}; always choose the smallest possible unused positive integer.


4



1, 2, 10, 3, 51, 30, 100, 4, 16, 40, 160, 352, 151, 34, 106, 25, 13, 24, 26, 240, 130, 250, 133, 295, 313, 1000, 5, 19, 50, 102, 6, 21, 60, 127, 171, 241, 175, 109, 45, 181, 450, 187, 400, 166, 3052, 1196, 302, 2865, 1441, 298, 31, 1165, 139, 7, 1015, 70, 1043, 700, 1168, 412, 1702, 125
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Inspired by A228276.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
E. Angelini, Add A to B
E. Angelini, Add A to B [Cached copy, with permission]


EXAMPLE

1*2 = 2 uses only digits from {1,2},
2*10 = 20 uses only digits from {2,1,0},
10*3 = 30 uses only digits from {1,0,3}.
What comes after 3? Call it x. 3*x must use only digits from 3 and the digits of x. Surprisingly x=51 is the first (unused) number which works.
And so on.


PROG

(Haskell)
import Data.List ((\\), delete)
a234932 n = a234932_list !! (n1)
a234932_list = 1 : f 1 [2..] where
f x zs = g zs where
g (y:ys) = if null $ show (x * y) \\ (show x ++ show y)
then y : f y (delete y zs) else g ys
 Reinhard Zumkeller, Jul 26 2014


CROSSREFS

Cf. A228276
Sequence in context: A120862 A153273 A276486 * A332701 A102512 A196364
Adjacent sequences: A234929 A234930 A234931 * A234933 A234934 A234935


KEYWORD

nonn,base,nice


AUTHOR

Claudio Meller, Jan 01 2014


EXTENSIONS

Entered by N. J. A. Sloane on Claudio Meller's behalf and submitted for the 2014 JMM competition with his permission.


STATUS

approved



