login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234591
Number of binary words of length n which have no 0^b 1 1 0^a 1 0 1 0^b - matches, where a=1, b=2.
2
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2044, 4084, 8160, 16304, 32576, 65088, 130048, 259841, 519173, 1037329, 2072626, 4141192, 8274272, 16532336, 33032288, 65999871, 131870458, 263482601, 526449078, 1051866919, 2101673384, 4199229896, 8390234112
OFFSET
0,2
LINKS
B. K. Miceli, J, Remmel, Minimal Overlapping Embeddings and Exact Matches in Words, PU. M. A., Vol. 23 (2012), No. 3, pp. 291-315.
FORMULA
G.f.: (1+x^8+x^9)/(1-2*x+x^8-x^9-x^10). - Alois P. Heinz, Jan 08 2014
MAPLE
a:= n-> coeff(series(-(x^9+x^8+1)/(x^10+x^9-x^8+2*x-1), x, n+1), x, n):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 08 2014
MATHEMATICA
a[n_ /; n<=9]:= 2^n; a[n_]:=a[n] =2*a[n-1] -a[n-8] +a[n-9] +a[n-10]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Mar 18 2014 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1+x^8+x^9)/(1-2*x+x^8-x^9-x^10)) \\ G. C. Greubel, Sep 14 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x^8+x^9)/(1-2*x+x^8-x^9-x^10) )); // G. C. Greubel, Sep 14 2019
(Sage)
def A234591_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^8+x^9)/(1-2*x+x^8-x^9-x^10)).list()
A234591_list(40) # G. C. Greubel, Sep 14 2019
(GAP) a:=[1, 2, 4, 8, 16, 32, 64, 128, 256, 512];; for n in [11..40] do a[n]:=2*a[n-1]-a[n-8]+a[n-9]+a[n-10]; od; a; # G. C. Greubel, Sep 14 2019
CROSSREFS
Sequence in context: A008862 A145116 A172319 * A122265 A339073 A194633
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 01 2014
EXTENSIONS
a(17)-a(33) from Alois P. Heinz, Jan 08 2014
STATUS
approved