login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234541
Least k such that floor(n/k) + (n mod k) is a prime, or 0 if no such k exists.
1
0, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 4, 1, 2, 3, 8, 1, 6, 1, 4, 2, 2, 1, 8, 2, 2, 5, 4, 1, 6, 1, 6, 2, 2, 3, 12, 1, 2, 3, 8, 1, 6, 1, 4, 2, 2, 1, 16, 3, 10, 3, 4, 1, 18, 3, 6, 2, 2, 1, 8, 1, 2, 6, 18, 3, 6, 1, 4, 3, 4, 1, 14, 1, 2, 9, 4, 5, 6, 1, 16, 2, 2, 1, 12, 2, 2
OFFSET
1,4
COMMENTS
a(n) = 1 only if n is a prime.
a(2m) <= m, because with k=m, floor(2m/m)+(2m mod m) = 2.
a(2m+1) <= 2m: floor((2m+1)/2m) + ((2m+1) mod 2m) = 1 + 1 = 2.
LINKS
PROG
(Python)
primes = [2, 3]
primFlg = [0]*100000
primFlg[2] = primFlg[3] = 1
def appPrime(k):
for p in primes:
if k%p==0: return
if p*p > k: break
primes.append(k)
primFlg[k] = 1
for n in range(5, 100000, 6):
appPrime(n)
appPrime(n+2)
for n in range(1, 100000):
a = 0
for k in range(1, n):
c = n//k + n%k
if primFlg[c]: # if c in primes:
a = k
break
print(str(a), end=', ')
(Scheme)
;; MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library and function A234575bi as defined in A234575
(require 'factor) ;; For predicate prime? from SLIB-library.
(define (A234541 n) (let loop ((k 1)) (cond ((prime? (A234575bi n k)) k) ((> k n) 0) (else (loop (+ 1 k))))))
;; Antti Karttunen, Dec 29 2013
CROSSREFS
Sequence in context: A296131 A345344 A319004 * A066389 A077191 A317545
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Dec 27 2013
STATUS
approved