OFFSET
1,3
COMMENTS
It seems that the numbers contain only the digits 0 and 1, and that the reversed fourth power and the square root of the reversed fourth power are both palindromes.
If the above comment is correct, and also if (as it appears) no more than two ones are among the digits of any term, this Mathematica program quickly generates the terms of the sequence: Flatten[Table[Select[ FromDigits/@Permutations[PadRight[PadRight[{},k,1],8,0]],IntegerQ[ Sqrt[ IntegerReverse[#^4]]]&],{k,0,2}]]//Sort - Harvey P. Dale, May 05 2020
EXAMPLE
101 is in the sequence because 101^4 = 104060401 and 104060401 = 10201^2.
110 is in the sequence because 110^4 = 146410000 and 14641 = 121^2.
MATHEMATICA
Select[Range[0, 10^7], IntegerQ[Sqrt[IntegerReverse[#^4]]]&] (* Harvey P. Dale, May 05 2020 *)
PROG
(PARI) revint(n) = m=n%10; n\=10; while(n>0, m=m*10+n%10; n\=10); m
s=[]; for(i=0, 1000000, if(issquare(revint(i^4)), s=concat(s, i))); s
(Magma) [n: n in [0..10^7] | IsSquare(Seqint(Reverse(Intseq(n^4))))]; // Bruno Berselli, Dec 27 2013
(Python)
from itertools import count, islice
from sympy import integer_nthroot
def A234472_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n:integer_nthroot(int(str(n**4)[::-1]), 2)[1], count(max(startvalue, 0)))
CROSSREFS
KEYWORD
nonn,base,nice
AUTHOR
Colin Barker, Dec 26 2013
STATUS
approved