login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234387
a(n) = n-th smallest prime congruent to 1 modulo prime(n).
1
3, 13, 41, 113, 331, 443, 613, 1103, 1013, 1741, 2543, 3257, 3691, 4129, 4889, 6997, 6491, 8053, 8443, 12071, 11681, 12799, 15439, 18869, 20759, 21211, 20807, 27179, 33791, 28703, 37339, 39301, 37813, 53377, 51853, 54059, 62801, 60637, 74149, 72661, 77687, 62989, 81749, 79903, 79589, 109849, 102547
OFFSET
1,1
LINKS
Zak Seidov and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from Seidov)
EXAMPLE
a(3) = 41 because prime(3) = 5 and primes == 1 mod 5 are 11, 31, 41;
a(4) = 113 because prime(4) = 7 and primes == 1 mod 7 are 29, 43, 71, 113.
MATHEMATICA
Reap[Sow[3]; Do[c=0; q=Prime[n]; p=1; While[c<n, p=p+2q; If[PrimeQ[p], c++]]; Sow[p], {n, 2, 100}]][[2, 1]]
PROG
(PARI) a(n)=if(n<2, return(3)); my(p=prime(n), q=2*p+1); while(n, if(isprime(q), n--); q+= 2*p); q-2*p \\ Charles R Greathouse IV, Dec 26 2013
CROSSREFS
Sequence in context: A309139 A049167 A241527 * A173867 A121162 A146018
KEYWORD
nonn
AUTHOR
Zak Seidov, Dec 25 2013
STATUS
approved