The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A233807 Number of tilings of an n X n square using right trominoes and at most one monomino. 7
1, 1, 4, 0, 16, 128, 162, 34528, 943096, 1193600, 3525377600, 480585761344, 2033502499954, 46983507796973152, 32908187880881958736, 458324092996867592192, 83153202122213272708832688, 299769486068040749617049301344 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Wikipedia, Tromino
EXAMPLE
a(2) = 4:
.___. .___. .___. .___.
|_| | | |_| | ._| |_. |
|___| |___| |_|_| |_|_| .
MAPLE
b:= proc(n, w, l) option remember; local k, t;
if max(l[])>n then 0 elif n=0 then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, w, map(h->h-t, l))
else for k while l[k]>0 do od;
`if`(w, b(n, false, s(k=1, l)), 0)+
`if`(k>1 and l[k-1]=1, b(n, w, s(k=2, k-1=2, l)), 0)+
`if`(k<nops(l) and l[k+1]=1, b(n, w, s(k=2, k+1=2, l)), 0)+
`if`(k<nops(l) and l[k+1]=0, b(n, w, s(k=1, k+1=2, l))+
b(n, w, s(k=2, k+1=1, l))+
`if`(w, b(n, false, s(k=2, k+1=2, l)), 0), 0)+
`if`(k+1<nops(l) and l[k+1]=0 and l[k+2]=0,
b(n, w, s(k=2, k+1=2, k+2=2, l)), 0)
fi
end:
a:= n-> b(n, evalb(irem(n, 3)>0), [0$n]): s:= subsop:
seq(a(n), n=0..10);
MATHEMATICA
$RecursionLimit = 1000; s = ReplacePart; b[n_, w_, l_] := b[n, w, l] = Module[{k, t}, Which[Max[l] > n, 0, n == 0, 1, Min[l] > 0, t = Min[l]; b[n-t, w, l-t], True, For[k = 1, l[[k]] > 0, k++ ]; If[w, b[n, False, s[l, k -> 1]], 0]+If[k > 1 && l[[k-1]] == 1, b[n, w, s[l, {k -> 2, k-1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 1, b[n, w, s[l, {k -> 2, k+1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 0, b[n, w, s[l, {k -> 1, k+1 -> 2}]]+b[n, w, s[l, {k -> 2, k+1 -> 1}]] + If[w, b[n, False, s[l, {k -> 2, k+1 -> 2}]], 0], 0] + If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, w, s[l, {k -> 2, k+1 -> 2, k+2 -> 2}]], 0] ] ]; a[n_] := b[n, Mod[n, 3] > 0, Array[0 &, n]]; Table[Print[an = a[n]]; an, {n, 0, 16}] (* Jean-François Alcover, Dec 30 2013, translated from Maple *)
CROSSREFS
Sequence in context: A002979 A137279 A343473 * A302771 A167350 A215669
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 16 2013
EXTENSIONS
a(17) from Alois P. Heinz, Sep 24 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 12:27 EDT 2024. Contains 372712 sequences. (Running on oeis4.)