login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233530
Triangle, read by rows, that transforms diagonals in the table of coefficients in the successive iterations of the g.f. (A233531) such that column 0 consists of all zeros after row 1.
5
1, 1, 1, 0, 2, 1, 0, 3, 3, 1, 0, 8, 9, 4, 1, 0, 38, 40, 18, 5, 1, 0, 268, 264, 112, 30, 6, 1, 0, 2578, 2379, 953, 240, 45, 7, 1, 0, 31672, 27568, 10500, 2505, 440, 63, 8, 1, 0, 475120, 392895, 143308, 32686, 5445, 728, 84, 9, 1, 0, 8427696, 6663624, 2342284, 514660, 82176, 10423, 1120, 108, 10, 1, 0, 172607454, 131211423, 44677494, 9514570, 1467837, 178689, 18214, 1632, 135, 11, 1
OFFSET
0,5
EXAMPLE
Triangle begins:
1;
1, 1;
0, 2, 1;
0, 3, 3, 1;
0, 8, 9, 4, 1;
0, 38, 40, 18, 5, 1;
0, 268, 264, 112, 30, 6, 1;
0, 2578, 2379, 953, 240, 45, 7, 1;
0, 31672, 27568, 10500, 2505, 440, 63, 8, 1;
0, 475120, 392895, 143308, 32686, 5445, 728, 84, 9, 1;
0, 8427696, 6663624, 2342284, 514660, 82176, 10423, 1120, 108, 10, 1;
0, 172607454, 131211423, 44677494, 9514570, 1467837, 178689, 18214, 1632, 135, 11, 1;
0, 4008441848, 2943137604, 974898636, 202185010, 30319020, 3572037, 349720, 29718, 2280, 165, 12, 1; ...
in which column 0 consists of all zeros after row 1.
ILLUSTRATION OF GENERATING METHOD.
The g.f. of A233531 begins:
G(x) = x + x^2 - 2*x^3 + 6*x^4 - 18*x^5 + 44*x^6 - 56*x^7 - 300*x^8 + 2024*x^9 - 22022*x^10 - 130456*x^11 - 4241064*x^12 - 103538532*x^13 - 2893308780*x^14 - 88314189664*x^15 - 2924814872208*x^16 - 104538530634844*x^17 - 4010605941377292*x^18 +...
If we form a table of coefficients in the iterations of G(x) like so:
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
[1, 1, -2, 6, -18, 44, -56, -300, 2024, -22022, ...];
[1, 2, -2, 3, 2, -48, 228, -734, -1298, -14630, ...];
[1, 3, 0, -3, 18, -54, -24, 625, -6324, -46064, ...];
[1, 4, 4, -6, 12, 26, -332, 244, -2078, -108754, ...];
[1, 5, 10, 0, -10, 90, -192, -2044, -3190, -137176, ...];
[1, 6, 18, 21, -18, 54, 312, -3178, -22032, -203692, ...];
[1, 7, 28, 63, 42, -28, 616, -931, -46722, -457746, ...];
[1, 8, 40, 132, 248, 156, 504, 3144, -51348, -913356, ...];
[1, 9, 54, 234, 702, 1296, 1656, 6924, -24444, -1366530, ...];
[1, 10, 70, 375, 1530, 4580, 9916, 22122, 38570, -1538042, ...];
[1, 11, 88, 561, 2882, 11814, 38280, 104929, 273592, -987932, ...];
[1, 12, 108, 798, 4932, 25542, 110604, 407932, 1351614, 2563858, ...]; ...
then this triangle T transforms one diagonal in the above table into another:
T*[1, 1, -2, -3, 12, 90, 312, -931, -51348, -1366530, ...]
= [1, 2, 0, -6, -10, 54, 616, 3144, -24444, -1538042, ...];
T*[1, 2, 0, -6, -10, 54, 616, 3144, -24444, -1538042, ...]
= [1, 3, 4, 0, -18,-28, 504, 6924, 38570, -987932, ...];
T*[1, 3, 4, 0, -18,-28, 504, 6924, 38570, -987932, ...]
= [1, 4,10, 21, 42,156,1656,22122, 273592, 2563858, ...].
PROG
(PARI) /* Given Root Series G, Calculate T(n, k) of Triangle: */
{T(n, k)=local(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x;
for(i=1, r+c-2, F=subst(F, x, G +x*O(x^(m+2)))); polcoeff(F, c));
N=matrix(m+1, m+1, r, c, M[r, c]);
P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
/* Calculates Root Series G and then Prints ROWS of Triangle: */
{ROWS=12; V=[1, 1]; print(""); print1("Root Sequence: [1, 1, ");
for(i=2, ROWS, V=concat(V, 0); G=x*truncate(Ser(V));
for(n=0, #V-1, if(n==#V-1, V[#V]=-T(n, 0)); for(k=0, n, T(n, k))); print1(V[#V]", "); );
print1("...]"); print(""); print(""); print("Triangle begins:");
for(n=0, #V-2, for(k=0, n, print1(T(n, k), ", ")); print(""))}
CROSSREFS
Cf. A233531, A233532, A233533, A233534, A233535 (row sums).
Sequence in context: A258170 A055830 A293109 * A079123 A121548 A180179
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 11 2013
STATUS
approved