login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232976
Numerators of coefficients in expansion of Product_{k>=1} 1/(1-x^k)^(k/2).
1
1, 1, 11, 37, 563, 1695, 12255, 36333, 972867, 2946747, 18641221, 55674771, 691993655, 2037484683, 12296580999, 36106933117, 1708708848483, 4955653540051, 28943726818665, 83124892750711, 958302911335293, 2730521640247521, 15561772451632937, 43970981993285115, 993588138105790887, 2785544697144356207, 15601240187271712393, 43442724873393477375, 482971671644633204159
OFFSET
0,3
COMMENTS
This is the square root of the g.f. for planar partitions (A000219).
EXAMPLE
1, 1/2, 11/8, 37/16, 563/128, 1695/256, 12255/1024, 36333/2048, 972867/32768, ...
MAPLE
mul( 1/(1-x^k)^(k/2), k=1..29) ;
taylor(%, x=0, 29) ;
gfun[seriestolist](%) ;
map(numer, %) ; # R. J. Mathar, Dec 08 2013
CROSSREFS
Denominators are A046161. Cf. A000219.
Sequence in context: A052432 A104269 A084014 * A084018 A235874 A012820
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Dec 07 2013
STATUS
approved