login
A232976
Numerators of coefficients in expansion of Product_{k>=1} 1/(1-x^k)^(k/2).
1
1, 1, 11, 37, 563, 1695, 12255, 36333, 972867, 2946747, 18641221, 55674771, 691993655, 2037484683, 12296580999, 36106933117, 1708708848483, 4955653540051, 28943726818665, 83124892750711, 958302911335293, 2730521640247521, 15561772451632937, 43970981993285115, 993588138105790887, 2785544697144356207, 15601240187271712393, 43442724873393477375, 482971671644633204159
OFFSET
0,3
COMMENTS
This is the square root of the g.f. for planar partitions (A000219).
EXAMPLE
1, 1/2, 11/8, 37/16, 563/128, 1695/256, 12255/1024, 36333/2048, 972867/32768, ...
MAPLE
mul( 1/(1-x^k)^(k/2), k=1..29) ;
taylor(%, x=0, 29) ;
gfun[seriestolist](%) ;
map(numer, %) ; # R. J. Mathar, Dec 08 2013
CROSSREFS
Denominators are A046161. Cf. A000219.
Sequence in context: A052432 A104269 A084014 * A084018 A235874 A012820
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Dec 07 2013
STATUS
approved