login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2*n-1)!! mod n!, where double factorial is A006882.
1

%I #14 Dec 07 2019 12:18:27

%S 0,1,3,9,105,315,4095,11025,348705,1545075,17931375,93087225,

%T 3764185425,45589819275,1060569885375,15877899662625,900941666625,

%U 5722531807867875,90088576482279375,1688777976676415625,18148954872023600625,320586579951629866875,11054393914490520969375

%N a(n) = (2*n-1)!! mod n!, where double factorial is A006882.

%C (2n-1)!! is the product of first n odd numbers.

%e a(4) = 1*3*5*7 mod (1*2*3*4) = 105 mod 24 = 9.

%t o = 1; Reap[For[n = 1, n <= 99, n += 2, o *= n; m = Mod[o, (Quotient[n, 2] + 1)!]; Sow[m]]][[2, 1]] (* _Jean-François Alcover_, Oct 05 2017, translated from _Alex Ratushnyak_'s Python code *)

%o (Python)

%o import math

%o o=1

%o for n in range(1,99,2):

%o o*=n

%o print str(o % math.factorial(n//2+1))+',',

%Y Cf. A006882, A232618, A024502 (floor((2*n-1)!! / n!)).

%K nonn

%O 1,3

%A _Alex Ratushnyak_, Nov 28 2013