login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232701
a(n) = (2*n-1)!! mod n!, where double factorial is A006882.
1
0, 1, 3, 9, 105, 315, 4095, 11025, 348705, 1545075, 17931375, 93087225, 3764185425, 45589819275, 1060569885375, 15877899662625, 900941666625, 5722531807867875, 90088576482279375, 1688777976676415625, 18148954872023600625, 320586579951629866875, 11054393914490520969375
OFFSET
1,3
COMMENTS
(2n-1)!! is the product of first n odd numbers.
EXAMPLE
a(4) = 1*3*5*7 mod (1*2*3*4) = 105 mod 24 = 9.
MATHEMATICA
o = 1; Reap[For[n = 1, n <= 99, n += 2, o *= n; m = Mod[o, (Quotient[n, 2] + 1)!]; Sow[m]]][[2, 1]] (* Jean-François Alcover, Oct 05 2017, translated from Alex Ratushnyak's Python code *)
PROG
(Python)
import math
o=1
for n in range(1, 99, 2):
o*=n
print str(o % math.factorial(n//2+1))+', ',
CROSSREFS
Cf. A006882, A232618, A024502 (floor((2*n-1)!! / n!)).
Sequence in context: A135989 A227772 A125652 * A364495 A340483 A018746
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Nov 28 2013
STATUS
approved