login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A232566
Let x(0)x(1)x(2)... x(q) denote the decimal expansion of n and sopf(n) the sum of the distinct prime divisors of n. Sequence lists the numbers n such that x(0)/sopf(n) + x(1)/sopf(n) + ... + x(q)/sopf(n) + x(0)*x(1)*x(2)*...*x(q)/sopf(n) is an integer.
0
2, 3, 4, 5, 7, 8, 9, 12, 14, 19, 29, 34, 49, 59, 64, 66, 74, 79, 89, 94, 117, 135, 144, 147, 155, 160, 175, 189, 192, 243, 250, 319, 375, 391, 448, 486, 512, 545, 627, 648, 657, 729, 735, 756, 784, 792, 825, 864, 875, 936, 968, 975, 1144, 1232, 1239, 1344, 1408
OFFSET
1,1
COMMENTS
The corresponding integers are 2, 2, 4, 2, 2, 8, 6, 1, 1, 1, 1, 1, 7, 1, 17, 3, 1, 1, 1, 1, 1, 3, 5, 4, 1, 1, 4, 9, 6, 11,...
The primes of this sequence are 2, 3, 5, 7, 19, 29, 59, 79, 89. It seems that this subsequence is probably finite (no further terms less than 10^7).
EXAMPLE
657 is in the sequence because the prime divisors of 657 are 3 and 73 => sopf(657) = 3+73 = 76 and 6/76 + 5/76 + 7/76 + 6*5*7/76 = 3 is an integer.
MAPLE
with(numtheory):for n from 2 to 1500 do:x:=convert(n, base, 10):n1:=nops(x):y:=factorset(n):n2:=nops(y):p:=1:s:=0:for i from 1 to n2 do:s:=s+y[i]:od:s1:=0:for j from 1 to n1 do:s1:=s1+x[j]/s:p:=p*x[j]:od:s1:=s1+p/s:if s1=floor(s1) then printf(`%d, `, n):else fi:od:
CROSSREFS
Cf. A008472.
Sequence in context: A051204 A335154 A278181 * A192649 A102363 A201816
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Nov 26 2013
STATUS
approved