OFFSET
3,1
COMMENTS
a(n) attains on subset of symmetric matrices with the main diagonal of 1's.
LINKS
Colin Barker, Table of n, a(n) for n = 3..1000
D. Merriell, The maximum permanents in Lambda_n,k, Linear and Multilinear Algebra, 1980, no.9, 81-91.
V. S. Shevelev, Some problems of the theory of enumerating the permutations with restricted position, Journal of Soviet Mathematics, 61 (4) (1992) 2272-2317
Index entries for linear recurrences with constant coefficients, signature (0,0,6).
FORMULA
a(n) = floor(6^((n-h)/3)*(3/2)^h), where h=0,1 or 2, such that n == h (mod 3).
From Colin Barker, May 27 2016: (Start)
a(n) = 6*a(n-3) for n>5.
G.f.: x^3*(6+9*x+13*x^2+3*x^5) / (1-6*x^3).
(End)
PROG
(PARI) a(n) = h = n%3; floor(6^((n-h)/3)*(3/2)^h); \\ Michel Marcus, Nov 26 2013
(PARI) Vec(x^3*(6+9*x+13*x^2+3*x^5)/(1-6*x^3) + O(x^50)) \\ Colin Barker, May 27 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Shevelev, Nov 26 2013
STATUS
approved