OFFSET
1,1
COMMENTS
The terms are permanents of a set of certain symmetric (0,1)-matrices as detailed in A176211. Thus the sequence solves a symmetric version of Gristein problem: to find all the values of permanent of all square (0,1) matrices, which contain exactly three 1's in each row and column (see the list of unsolved problems in chapter 8 of Minc's book).
REFERENCES
H. Minc, Permanents, Addison-Wesley, 1978.
LINKS
V. S. Shevelev, Some problems of the theory of enumerating the permutations with restricted position, Journal of Soviet Mathematics, 61 (4) (1992) 2272-2317
PROG
(PARI) f(n) = fibonacci(n+1) + fibonacci(n-1) + 2; \\ A000211
lista(nn) = {my(v = vector(nn, k, f(k+2))); my(vmax = vecmax(v)); my(w = vector(nn, k, [0, logint(vmax, v[k])])); my(list=List()); forvec(x = w, if (vecmax(x), my(y = prod(k=1, #v, v[k]^x[k])); if (y <= vmax, listput(list, y)); ); ); Vec(vecsort(list, , 8)); }
lista(14) \\ Michel Marcus, Jan 06 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Apr 12 2010
STATUS
approved