login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232541
Multiplicative Smith numbers: Composite numbers n such that the product of nonzero digits of n = product of nonzero digits of prime factors of n.
1
4, 6, 8, 9, 95, 159, 195, 249, 326, 762, 973, 995, 998, 1057, 1086, 1111, 1189, 1236, 1255, 1337, 1338, 1383, 1389, 1395, 1419, 1509, 2139, 2248, 2623, 2679, 2737, 2928, 2949, 3029, 3065, 3202, 3344, 3345, 3419, 3432, 3437, 3464, 3706, 3945, 4344, 4502
OFFSET
1,1
COMMENTS
They follow the same formula for Smith numbers, however, instead of addition, we have multiplication (only nonzero digits are included).
Trivially, prime numbers satisfy this property but are not included in the sequence.
EXAMPLE
1236 is a member of this sequence because 1236 = 2*2*3*103 and 1*2*3*6 = 2*2*3*1*3 (zeros are not included).
998 is a member of this sequence because 998 = 2*499 and 9*9*8 = 2*4*9*9.
MATHEMATICA
f[n_] := Times @@ DeleteCases[IntegerDigits[n], 0]; pFactors[n_] := Module[{f = FactorInteger[n]}, Flatten[ConstantArray @@@ f]]; Select[Range[2, 10000], ! PrimeQ[#] && f[#] == Times @@ f /@ pFactors[#] &] (* T. D. Noe, Nov 28 2013 *)
msnQ[n_]:=Times@@(Flatten[IntegerDigits/@Table[#[[1]], #[[2]]]&/@ FactorInteger[ n]]/.(0->1))==Times@@(IntegerDigits[n]/.(0->1)); Select[ Range[ 5000], CompositeQ[#]&&msnQ[#]&] (* Harvey P. Dale, Jan 15 2022 *)
PROG
(Python)
import sympy
from sympy import isprime
from sympy import factorint
def DigitProd(x):
prod = 1
for i in str(x):
if i != '0':
prod *= int(i)
return prod
def f(x):
lst = []
for n in range(len(list(factorint(x)))):
lst.append(str(list(factorint(x))[n])*list(factorint(x).values())[n])
string = ''
for i in lst:
string += i
prod = 1
for a in string:
if a != '0':
prod *= int(a)
if prod == DigitProd(x):
return True
x = 4
while x < 10**3:
if not isprime(x):
if f(x):
print(x)
x += 1
(Sage)
def prodPrimeDig(x):
F=factor(x)
T=[item for sublist in [[y[0]]*y[1] for y in F] for item in sublist]
return prod([prod(filter(lambda a: a!=0, h.digits(base=10))) for h in T])
n=3345 #Change n for more digits
[k for k in [1..n] if prod(filter(lambda a: a!=0, k.digits(base=10)))==prodPrimeDig(k) and not(is_prime(k))] # Tom Edgar, Nov 26 2013
CROSSREFS
Sequence in context: A029581 A202262 A202266 * A076612 A182775 A046354
KEYWORD
nonn,base,easy
AUTHOR
Derek Orr, Nov 25 2013
EXTENSIONS
Extended by T. D. Noe, Nov 28 2013
STATUS
approved