login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p of the form penta(n)-3, where penta(n) is the n-th pentagonal number.
1

%I #11 Jul 11 2015 09:26:02

%S 2,19,67,89,173,373,587,1423,2377,2749,2879,4027,4507,4673,5189,6899,

%T 7523,8623,9319,10289,12373,12647,13487,14947,15859,17117,18757,19777,

%U 20123,21179,24509,25673,27673,28909,29327,32779,34123,38317,39769,47969,52919,54623

%N Primes p of the form penta(n)-3, where penta(n) is the n-th pentagonal number.

%C The n-th pentagonal number is (3*n^2-n)/2 = n*(3*n-1)/2.

%H K. D. Bajpai, <a href="/A232537/b232537.txt">Table of n, a(n) for n = 1..8500</a>

%e a(2)= 19: n= 4: (3*n^2-n)/2-3= 19, which is prime.

%e a(6)= 373: n= 16: (3*n^2-n)/2-3= 373, which is prime.

%p KD:= proc() local a,b; a:= (3*n^2-n)/2; b:=a-3; if isprime(b) then RETURN (b): fi; end: seq(KD(), n=1..500);

%t Select[Table[(n(3n-1))/2-3,{n,2,200}],PrimeQ] (* _Harvey P. Dale_, Jul 11 2015 *)

%Y Cf. A000326 (pentagonal numbers), A000040 (primes).

%K nonn

%O 1,1

%A _K. D. Bajpai_, Nov 25 2013