login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232537
Primes p of the form penta(n)-3, where penta(n) is the n-th pentagonal number.
1
2, 19, 67, 89, 173, 373, 587, 1423, 2377, 2749, 2879, 4027, 4507, 4673, 5189, 6899, 7523, 8623, 9319, 10289, 12373, 12647, 13487, 14947, 15859, 17117, 18757, 19777, 20123, 21179, 24509, 25673, 27673, 28909, 29327, 32779, 34123, 38317, 39769, 47969, 52919, 54623
OFFSET
1,1
COMMENTS
The n-th pentagonal number is (3*n^2-n)/2 = n*(3*n-1)/2.
LINKS
EXAMPLE
a(2)= 19: n= 4: (3*n^2-n)/2-3= 19, which is prime.
a(6)= 373: n= 16: (3*n^2-n)/2-3= 373, which is prime.
MAPLE
KD:= proc() local a, b; a:= (3*n^2-n)/2; b:=a-3; if isprime(b) then RETURN (b): fi; end: seq(KD(), n=1..500);
MATHEMATICA
Select[Table[(n(3n-1))/2-3, {n, 2, 200}], PrimeQ] (* Harvey P. Dale, Jul 11 2015 *)
CROSSREFS
Cf. A000326 (pentagonal numbers), A000040 (primes).
Sequence in context: A042149 A218547 A365494 * A309341 A079773 A217082
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Nov 25 2013
STATUS
approved