login
A232496
Triangle read by rows: T(n,k) (n >= 2, 1 <= k <= n-1) = Euclidean distance degree of variety of n X n matrices of rank <= k.
0
4, 13, 13, 40, 122, 40, 121, 1042, 1042, 121, 364, 8683, 23544, 8683, 364, 1093, 72271, 510835, 510835, 72271, 1093
OFFSET
2,1
COMMENTS
Column 1 appears to follow the recurrence T(n, 1) = 3*T(n-1, 1) + 1 (A003462, all ones in base 3). - Georg Fischer, Mar 05 2020
LINKS
J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels and R. K. Thomas, The Euclidean distance degree of an algebraic variety, arXiv preprint arXiv: 1309.0049 [math.AG], 2013-2014, p. 24.
EXAMPLE
Triangle begins:
4;
13, 13;
40, 122, 40;
121, 1042, 1042, 121;
364, 8683, 23544, 8683, 364;
1093, 72271, 510835, 510835, 72271, 1093;
...
CROSSREFS
Cf. A003462.
Sequence in context: A168401 A370644 A081738 * A239256 A043049 A135465
KEYWORD
nonn,tabl,more
AUTHOR
N. J. A. Sloane, Dec 03 2013
STATUS
approved