

A232496


Triangle read by rows: T(n,k) (n >= 2, 1 <= k <= n1) = Euclidean distance degree of variety of n X n matrices of rank <= k.


0



4, 13, 13, 40, 122, 40, 121, 1042, 1042, 121, 364, 8683, 23544, 8683, 364, 1093, 72271, 510835, 510835, 72271, 1093
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


LINKS

Table of n, a(n) for n=2..22.
J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels and R. K. Thomas, The Euclidean distance degree of an algebraic variety, arXiv preprint arXiv: 1309.0049, 2013.


EXAMPLE

Triangle begins:
4,
13,13,
40,122,40,
121,1042,1042,121,
364,8683,23544,8683,364,
1093,72271,510835,510835,72271,1093,
...


CROSSREFS

Sequence in context: A301792 A168401 A081738 * A239256 A043049 A135465
Adjacent sequences: A232493 A232494 A232495 * A232497 A232498 A232499


KEYWORD

nonn,tabl,more


AUTHOR

N. J. A. Sloane, Dec 03 2013


STATUS

approved



