login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232295
T(n,k)=Number of nXk 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally
14
1, 3, 1, 7, 15, 1, 15, 97, 73, 1, 33, 587, 1313, 355, 1, 73, 3615, 20563, 17759, 1727, 1, 161, 22387, 336079, 718483, 240241, 8401, 1, 355, 138505, 5546705, 31119789, 25116353, 3249889, 40867, 1, 783, 856719, 91293443, 1370434057, 2885285507
OFFSET
1,2
COMMENTS
Table starts
.1......3..........7.............15.................33.....................73
.1.....15.........97............587...............3615..................22387
.1.....73.......1313..........20563.............336079................5546705
.1....355......17759.........718483...........31119789.............1370434057
.1...1727.....240241.......25116353.........2885285507...........339565321435
.1...8401....3249889......877968487.......267483142619.........84130295708483
.1..40867...43963319....30690409685.....24797475083765......20843967523877175
.1.198799..594719777..1072818688305...2298890419506403....5164265865545602229
.1.967065.8045152705.37501616113029.213122398219612007.1279489656786836660869
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) +4*a(n-2) +a(n-3)
k=3: a(n) = 12*a(n-1) +20*a(n-2) +9*a(n-3)
k=4: [order 10]
k=5: [order 13] for n>14
k=6: [order 37] for n>38
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-3)
n=2: [order 9]
n=3: [order 31]
EXAMPLE
Some solutions for n=3 k=4
..2..2..2..1....2..1..2..2....0..1..0..1....2..2..2..2....1..2..1..0
..2..1..0..0....1..2..2..1....2..2..2..0....1..1..2..0....2..0..2..2
..0..0..1..2....1..0..2..2....2..2..1..2....2..2..1..2....2..2..1..0
CROSSREFS
Row 1 is A193641
Sequence in context: A219063 A218810 A218638 * A228763 A101845 A193606
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 22 2013
STATUS
approved